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MEAP VERSION 11



Welcome
Hi There!

Wow, time does fly! It’s hard to believe it’s February 2022. While I’ve tried
to improve the rate of MEAP releases, it still seems like life continues to
throw challenges at me, impacting my delivery. But hang in there as, with
this MEAP release, we’re just about halfway done! As before, I’m working to
improve the timing of MEAP releases.

So what’s new in this installment? First of all, I’ve decided to change the title
to Kafka Streams in Action 2nd Edition. After thinking about it for a while,
the heart of this book is still Kafka Streams, so I wanted the title to reflect
that fact. As for the content of this MEAP release, we continue with our
coverage of the core Kafka Streams API, this time looking at stateful
operations.

Here’s a list of some of the things you’ll learn in chapter 7:

1. The difference between stateless and stateful applications
2. The various types of stateful operations-- reduce, aggregations, and joins
3. The importance of keys in stateful operations in Kafka Streams

I’m excited to present this chapter to you, as I think this is where you learn
how to build powerful applications to solve real-world problems.

One thing to note is that I’ve updated to source code to support Java 17.
Given all the significant improvements available in that release, I felt it
worthwhile to make the switch. So be sure to update your local Java
installation when working with the source code.

I’ve made every attempt to make sure the book is clear and accurate. Feel
free to join me on the liveBook forum at Manning.com to ask questions, offer
feedback, and participate in the conversation to shape this book.

— Bill Bejeck
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1 Welcome to the Kafka Event
Streaming Platform
This chapter covers

Defining event streaming and events
Introducing the Kafka event streaming platform
Applying the platform to a concrete example

We live in a world today of unprecedented connectivity. We can watch
movies on demand on an IPad, get instant notification of various accounts'
status, pay bills, and deposit checks from our smartphones. If you chose to,
you can receive updates on events happening around the world 24/7 by
watching your social media accounts.

While this constant influx of information creates more entertainment and
opportunities for the human consumer, more and more of the users of this
information are software systems using other software systems.
Consequently, businesses are forced to find ways to keep up with the demand
and leverage the available flow of information to improve the customer
experience and improve their bottom lines. For today’s developer, we can
sum up all this digital activity in one term: event streaming.

1.1 What is event streaming ?

In a nutshell, event streaming is capturing events generated from different
sources like mobile devices, customer interaction with websites, online
activity, shipment tracking, and business transactions. Event streaming is
analogous to our nervous system, processing millions of events and sending
signals to the appropriate parts of our body. Some signals are generated by
our actions such as reaching for an apple, and other signals are handled
unconsciously, as when your heart rate increases in anticipation of some
exciting news. We could also see activities from machines such as sensors



and inventory control as event streaming.

But event streaming doesn’t stop at capturing events; it also means
processing and durable storage.

The ability to process the event stream immediately is essential for making
decisions based on real-time information. For example, does this purchase
from customer X seem suspicious? Are the signals coming from this
temperature sensor seem to indicate that something has gone wrong in a
manufacturing process? Has the routing information been sent to the
appropriate department of a business?

The value of the event stream is not limited to immediate information. By
providing durable storage, we can go back and look at event stream data-in
its raw form or perform some manipulation of the data for more insight.

1.1.1 What is an event ?

So we’ve defined what an event stream is, but what is an event? We’ll define
event very simply as "something that happens"[1]. While the term event
probably brings something to mind something notable happening like the
birth of a child, a wedding, or sporting event, we’re going to focus on
smaller, more constant events like a customer making a purchase (online or
in-person), or clicking a link on a web-page, or a sensor transmitting data.
Either people or machines can generate events. It’s the sequence of events
and the constant flow of them that make up an event stream.

Events conceptually contain three main components:

1. Key - an identifier for the event
2. Value - the event itself
3. timestamp - when the event occurred

Let’s discuss each of these parts of an event in a little more detail. The key
could be an identifier for the event, and as we’ll learn in later chapters, it
plays a role in routing and grouping events. Think of an online purchase, and
using the customer id is an excellent example of the key. The value is the
event payload itself. The event value could be a trigger such as activating a



sensor when someone opens a door or a result of some action like the item
purchased in the online sale. Finally, the timestamp is the date-time when
recording when the event occurred. As we go through the various chapters in
this book, we’ll encounter all three components of this "event trinity"
regularly.

1.1.2 An event stream example

Let’s say you’ve purchased a Flux Capacitor, and you’re excited to receive
your new purchase. Let’s walk through the events leading up to the time you
get your brand new Flux Capacitor, using the following illustration as your
guide.

Figure 1.1. A sequence of events comprising an event stream starting with the online purchase of
the flux ch01capacitor



1. You complete the purchase on the retailer’s website, and the site
provides a tracking number.

2. The retailer’s warehouse receives the purchase event information and
puts the Flux Capacitor on a shipping truck, recording the date and time
your purchase left the warehouse.



3. The truck arrives at the airport, the driver loads the Flux Capacitor on a
plane, and scans a barcode recording the date and time.

4. The plane lands, and the package is loaded on a truck again headed for
the regional distribution center. The delivery service records the date
and time when they’ve loaded your Flux Capacitor.

5. The truck from the airport arrives at the regional distribution center. A
delivery service employee unloads the Flux Capacitor , scanning the
date and time of the arrival at the distribution center.

6. Another employee takes your Flux Capacitor, scans the package saving
the date and time, and loads it on a truck bound for delivery to you.

7. The driver arrives at your house, scans the package one last time, and
hands it to you. You can start building your time-traveling car!

From our example here, you can see how everyday actions create events,
hence an event stream. The individual events here are the initial purchase,
each time the package changes custody, and the final delivery. This scenario
represents events generated by just one purchase. But if you think of the
event streams generated by purchases from Amazon and the various shippers
of the products, the number of events could easily number in the billions or
trillions.

1.1.3 Who needs event streaming applications

Since everything in life can be considered an event, then pretty much any
problem domain will benefit from using event streams. But there are some
areas where it’s more important to do so. Here are some typical examples

Credit card fraud — A credit card owner may be unaware of
unauthorized use. By reviewing purchases as they happen against
established patterns (location, general spending habits), you may be able
to detect a stolen credit card and alert the owner.
Intrusion detection — The ability to monitor aberrant behavior in real-
time is critical for the protection of sensitive data and well being of an
organization.
The Internet of Things - With IoT, there are sensors located in all kinds
of places, and they all send back data very frequently. The ability to
quickly capture this data and process it in a meaningful way is essential;



anything less diminishes the effect of having these sensors deployed.
The financial industry — The ability to track market prices and direction
in real-time is essential for brokers and consumers to make effective
decisions about when to sell or buy.
Sharing data in real-time - Large organizations, like corporations or
conglomerates, that have many applications need to share data in a
standard, accurate, and real-time way

If the event-stream provides essential and actionable information, businesses
and organizations need event-driven applications to capitalize on the
information provided. In the next section, we’ll break down the different
components of the Kafka event streaming platform.

I’ve made a case for building event-streaming applications. But streaming
applications aren’t a fit for every situation.

Event-streaming applications become a necessity when you have data in
different places or you have a large volume of events that you need to use
distributed data stores to handle the volume. So if you can manage with a
single database instance, then streaming is not a necessity. For example, a
small e-commerce business or a local government website with mostly static
data aren’t good candidates for building an event-streaming solution.

1.2 Introducing the Apache Kafka® event
streaming platform

The Kafka event streaming platform provides the core capabilities for you to
implement your event streaming application from end-to-end. We can break
down these capabilities into three main areas: publish/consume, durable
storage, and processing. This move, store, and process trilogy enables Kafka
to operate as the central nervous system for your data.

Before we go on, it will be useful to give you an illustration of what it means
for Kafka to be the central nervous system for your data. We’ll do this by
showing before and after illustrations.

Let’s first look at an event-streaming solution where each input source



requires separate infrastructure:

Figure 1.2. Initial event-streaming architecture leads to complexity as the different departments
and data streams sources need to be aware of the other sources of events



In the above illustration, you have individual departments creating separate
infrastructure to meet their requirements. But other departments may be
interested in consuming the same data, which leads to a more complicated
architecture to connect the various input streams.

Now let’s take a look at how using the Kafka event streaming platform can
change things.

Figure 1.3. Using the Kafka event streaming platform the architecture is simplified



As you can see from this updated illustration, the architecture is greatly
simplified with the Kafka event streaming platform’s addition. All
components now send their records to Kafka. Additionally, consumers read
data from Kafka with no awareness of the producers.



At a high level, Kafka is a distributed system of servers and clients. The
servers are called brokers, and the clients are record producers sending
records to the brokers, and the consumer clients read records for the
processing of events.

1.2.1 Kafka brokers

Kafka brokers durably store your records in contrast with traditional
messaging systems (RabbitMQ or ActiveMQ) where the messages are
ephemeral. The brokers store the data agnostically as the key-value pairs (and
some other metadata fields) in byte format and are somewhat of a black box
to the broker.

Providing storage of events has more profound implications as well
concerning the difference between messages and events. You can think of
messages as "tactical" communication between two machines, while events
represent business-critical data that you don’t want to throw away.

Figure 1.4. You deploy brokers in a cluster, and brokers replicate data for durable storage



From this illustration, you can see that Kafka brokers are the storage layer
within the Kafka architecture and sit in the "storage" portion of the event-
streaming trilogy. But in addition to acting as the storage layer, the brokers
provide other essential functions such as serving requests from clients to
providing coordination for consumers. We’ll go into details of broker



functionality in chapter 2.

1.2.2 Schema registry

Figure 1.5. Schema registry enforces data modeling across the platform



Data governance is vital, to begin with, and its importance only increases as
the size and diversity of an organization grows. Schema Registry stores
schemas of the event records. Schemas enforce a contract for data between
producers and consumers. Schema Registry also provides serializers and
deserializers supporting different tools that are Schema Registry aware.
Providing (de)serializers means you don’t have to write your serialization
code. We’ll cover Schema Registry in chapter 3.

1.2.3 Producer and consumer clients

Figure 1.6. producers write records into Kafka, and consumers read records



The Producer client is responsible for sending records into Kafka. The
consumer is responsible for reading records from Kafka. These two clients
form the basic building blocks for creating an event-driven application and
are agnostic to each other, allowing for greater scalability. The producer and
consumer client also form the foundation for any higher-level abstraction



working with Apache Kafka. We cover clients in chapter 4.

1.2.4 Kafka Connect

Figure 1.7. Kafka Connect bridges the gap between external systems and Apache Kafka



Kafka Connect provides an abstraction over the producer and consumer
clients for importing data to and exporting data from Apache Kafka. Kafka
connect is essential in connecting external data stores with Apache Kafka. It
also provides an opportunity to perform light-weight transformations of data
with Simple Messages Transforms when either exporting or importing data.
We’ll go into details of Kafka Connect in a later chapter.

1.2.5 Kafka Streams

Figure 1.8. Kafka Streams is the stream processing API for Kafka



Kafka Streams is the native stream processing library for Kafka. Kafka
Streams is written in the Java programming language and is used by client
applications at the perimeter of a Kafka cluster; it is *not* run inside a Kafka
broker. It provides support for performing operations on event data, including
transformations, stateful operations like joins, and aggregations. Kafka



Streams is where you’ll do the heart of your work when dealing with events.
Chapters 6, 7, and 8 cover Kafka Streams in detail.

1.2.6 ksqlDB

ksqlDB is an event streaming database. It does this by applying a SQL
interface for event stream processing. Under the covers, ksqlDB uses Kafka
Streams for performing its event streaming tasks. A key advantage of ksqlDB
is that it allows you to specify your event streaming operation in SQL; no
code is required. We’ll discuss ksqlDB in chapters 8 and 9.

Figure 1.9. ksqlDB provides streaming database capabilities

Now that we’ve gone over how the Kafka event streaming platform works,



including the individual components, let’s apply a concrete example of a
retail operation demonstrating how the Kafka event streaming platform
works.

1.3 A concrete example of applying the Kafka event
streaming platform

Let’s say there is a consumer named Jane Doe, and she checks her email.
There’s one email from ZMart with a link to a page on the ZMart website
containing coupons for 15% off the total purchase price. Once on the web
page, Jane clicks another link to activate the coupons and print them out.
While this whole sequence is just another online purchase for Jane, it
represents clickstream events for ZMart.

Let’s take a moment here to pause our scenario so we discuss the relationship
between these simple events and how they interact with the Kafka event
streaming platform.

The data generated by the initial clicks to navigate to and print the coupons
create clickstream information captured and produced directly into Kafka
with a producer microservice. The marketing department started a new
campaign and wants to measure its effectiveness, so the clickstream events
available at this point are valuable.

The first sign of a successful project is that users click on the email links to
retrieve the coupons. Additionally, the data science group is interested in the
pre-purchase clickstream data as well. The data science team can track
customers' initial actions and later attribute purchases to those initial clicks
and marketing campaigns. The amount of data from this single activity may
seem small. When you factor in a large customer base and several different
marketing campaigns, you end up with a significant amount of data.

Now let’s resume our shopping example.

It’s late summer, and Jane has been meaning to get out shopping to get her
children some back-to-school supplies. Since tonight is a rare night with no
family activities, Jane decides to stop off at ZMart on her way home.



Walking through the store after grabbing everything she needs, Jane walks by
the footwear section and notices some new designer shoes that would go
great with her new suit. She realizes that’s not what she came in for, but what
the heck life is short (ZMart thrives on impulse purchases!), so Jane gets the
shoes.

As Jane approaches the self-checkout aisle, she first scans her ZMart member
card. After scanning all the items, she scans the coupon, which reduces the
purchase by 15%. Then Jane pays for the transaction with her debit card,
takes the receipt, and walks out of the store. A little later that evening, Jane
checks her email, and there’s a message from ZMart thanking her for her
patronage, with coupons for discounts on a new line of designer clothes.

Let’s dissect the purchase transaction and see this one event triggers a
sequence of operations performed by the Kafka event streaming platform.

So now ZMart’s sales data streams into Kafka. In this case, ZMart uses Kafka
Connect to create a source connector to capture the sales as they occur and
send them into Kafka. The sale transaction brings us to the first requirement,
the protection of customer data. In this case, ZMart uses an SMT or Simple
Message Transform to mask the credit card data as it goes into Kafka.

Figure 1.10. Sending all of the sales data directly into Kafka with connect masking the credit card
numbers as part of the process



As connect writes records into Kafka, they are immediately consumed by
different organizations within ZMart. The department in charge of
promotions created an application for consuming sales data for assigning
purchase rewards if they are a member of the loyalty club. If the customer
reaches a threshold for earning a bonus, an email with a coupon goes out to



the customer.

Figure 1.11. Marketing department application for processing customer points and sending out
earned emails



It’s important to note that ZMart processes sales records immediately after
the sale. So customers get timely emails with their rewards within a few
minutes of completing their purchases. By acting on the purchase events as
they happen allows ZMart a quick response time to offer customer bonuses.

The Data Science group within ZMart uses the sales data topic as well. The
DS group uses a Kafka Streams application to process the sales data building
up purchase patterns of what customers in different locations are purchasing
the most. The Kafka Streams application crunches the data in real-time and
sends the results out to a sales-trends topic.

Figure 1.12. Kafka Streams application crunching sales data and connect exporting the data for a
dashboard application



ZMart uses another Kafka connector to export the sales trends to an external
application that publishes the results in a dashboard application. Another
group also consumes from the sales topic to keep track of inventory and order
new items if they drop below a given threshold, signaling the need to order
more of that product.



At this point, you can see how ZMart leverages the Kafka platform. It is
important to remember that with an event streaming approach, ZMart
responds to data as it arrives, allowing them to make quick and efficient
decisions immediately. Also, note how you write into Kafka once, yet
multiple groups consume it at different times, independently in a way that
one group’s activity doesn’t impede another’s.

In this book, you’ll learn what event-stream development is, why it’s
essential, and how to use the Kafka event streaming platform to build robust
and responsive applications. From extract, transform, and load (ETL)
applications to advanced stateful applications requiring complex
transformations, we’ll cover the Kafka streaming platform’s components so
you can solve the kinds of challenges presented earlier with an event-
streaming approach. This book is suitable for any developer looking to get
into building event streaming applications.

1.4 Summary

Event streaming is capturing events generated from different sources
like mobile devices, customer interaction with websites, online activity,
shipment tracking, and business transactions. Event streaming is
analogous to our nervous system.
An event is "something that happens," and the ability to react
immediately and review later is an essential concept of an event
streaming platform
Kafka acts as a central nervous system for your data and simplifies your
event stream processing architecture
The Kafka event streaming platform provides the core capabilities for
you to implement your event streaming application from end-to-end by
delivering the three main components of publish/consume, durable
storage, and processing.
Kafka broker are the storage layer and service requests from clients for
writing and reading records. The brokers store records as bytes and do
no touch or alter the contents.
Schema Registry provides a way to ensure compatibility of records
between producers and consumers.
Producer clients write (produce) records to the broker. Consumer clients



consume records from the broker. The producer and consumer clients
are agnostic of each other. Additionally, the Kafka broker doesn’t have
any knowledge of who the individual clients are, they just process the
requests.
Kafka Connect provides a mechanism for integrating existing systems
such as external storage for getting data into and out of Kafka.
Kafka Streams is the native stream processing library for Kafka. It runs
at the perimeter of a Kafka cluster, not inside the brokers and provides
support for transforming data including joins and stateful
transformations.
ksqlDB is an event streaming database for Kafka. It allows you to build
powerful real-time systems with just a few lines of SQL.

[1] https://www.merriam-webster.com/dictionary/event



2 Kafka Brokers
This chapter covers

Explaining how the Kafka Broker is the storage layer in the Kafka event
streaming platform
Describing how Kafka brokers handle requests from clients for writing
and reading records
Understanding topics and partitions
Using JMX metrics to check for a healthy broker

In chapter one, I provided an overall view of the Kafka event streaming
platform and the different components that make up the platform. In this
chapter, we will focus on the heart of the system, the Kafka broker. The
Kafka broker is the server in the Kafka architecture and serves as the storage
layer.

In the course of describing the broker behavior in this chapter, we’ll get into
some lower-level details. I feel it’s essential to cover them to give you an
understanding of how the broker operates. Additionally, some of the things
we’ll cover, such as topics and partitions, are essential concepts you’ll need
to understand when we get into the chapter on clients. But in practice, as a
developer, you won’t have to handle these topics daily.

As the storage layer, the broker is responsible for data management,
including retention and replication. Retention is how long the brokers store
records. Replication is how brokers make copies of the data for durable
storage, meaning if you lose a machine, you won’t lose data.

But the broker also handles requests from clients. Here’s an illustration
showing the client applications and the brokers:

Figure 2.1. Clients communicating with brokers





To give you a quick mental model of the broker’s role, we can summarize the
illustration above: Clients send requests to the broker. The broker then
processes those requests and sends a response. While I’m glossing over
several details of the interaction, that is the gist of the operation.

  Note

Kafka is a deep subject, so I won’t cover every aspect. I’ll go over enough
information to get you started working with the Kafka event streaming
platform. For in-depth Kafka coverage, look at Kafka in Action by Dylan
Scott (Manning, 2018).

You can deploy Kafka brokers on commodity hardware, containers, virtual
machines, or in cloud environments. In this book, you’ll use Kafka in a
docker container, so you won’t need to install it directly. I’ll cover the
necessary Kafka installation in an appendix.

While you’re learning about the Kafka broker, I’ll need to talk about the
producer and consumer clients. But since this is chapter is about the broker,
I’ll focus more on the broker’s responsibilities. So at times, I’ll leave out
some of the client details. But not to worry, we’ll get to those details in a later
chapter.

So, let’s get started with some walkthroughs of how a broker handles client
requests, starting with producing.

2.1 Produce record requests

When a client wants to send records to the broker, it does so with a produce
request. Clients send records to the broker for storage so that consuming
clients can later read those records.

Here’s an illustration of a producer sending records to a broker. It’s important
to note these illustrations aren’t drawn to scale. What I mean is that typically
you’ll have many clients communicating with several brokers in a cluster. A
single client will work with more than one broker. But it’s easier to get a



mental picture of what’s going on if I keep the illustrations simple. Also, note
that I’m simplifying the interaction, but we’ll cover more details when
discussing clients in chapter 4.

Figure 2.2. Brokers handling produce records request

Let’s walk through the steps in the "Producing records" illustration.

1. The producer sends a batch of records to the broker. Whether it’s a
producer or consumer, the client APIs always work with a collection of



records to encourage batching.
2. The broker takes the produce request out of the request queue.
3. The broker stores the records in a topic. Inside the topic, there are

partitions; you can consider a partition way of bucketing the different
records for now. A single batch of records always belongs to a specific
partition within a topic, and the records are always appended at the end.

4. Once the broker completes the storing of the records, it sends a response
back to the producer. We’ll talk more about what makes up a successful
write later in this chapter and again in chapter 4.

Now that we’ve walked through an example produce request, let’s walk
through another request type, fetch, which is the logical opposite of
producing records; consuming records.

2.2 Consume record requests

Now let’s take a look at the other side of the coin from a produce request to a
consume request. Consumer clients issue requests to a broker to read (or
consume) records from a topic. A critical point to understand is that
consuming records does not affect data retention or records availability to
other consuming clients. Kafka brokers can handle hundreds of consume
requests for records from the same topic, and each request has no impact on
the other. We’ll get into data retention a bit later, but the broker handles it
utterly separate from consumers.

It’s also important to note that producers and consumers are unaware of each
other. The broker handles produce and consume requests separately; one has
nothing to do with the other. The example here is simplified to emphasize the
overall action from the broker’s point of view.

Figure 2.3. Brokers handling requests from a consumer



So let’s go through the steps of the illustrated consume request.

1. The consumer sends a fetch request specifying the offset it wants to start
reading records from. We’ll discuss offsets in more detail later in the
chapter.

2. The broker takes the fetch request out of the request queue
3. Based on the offset and the topic partition in the request, the broker

fetches a batch of records
4. The broker sends the fetched batch of records in the response to the

consumer

Now that we’ve completed a walk through two common request types,
produce and fetch, I’m sure you noticed a few terms I haven’t mentioned yet
in the text, topics, partitions, and offsets. Topics, partitions, and offsets are



fundamental, essential concepts in Kafka, so let’s take some time now to
explore what they mean.

2.3 Topics and partitions

In chapter one, we discussed that Kafka provides storage for data. Kafka
durably stores your data as an unbounded series of key-value pair messages
for as long as you want (there are other fields included in the messages, such
as a timestamp, but we’ll get to those details later on). Kafka replicates data
across multiple brokers, so losing a disk or an entire broker means no data is
lost.

Specifically, Kafka brokers use the file system for storage by appending the
incoming records to the end of a file in a topic. A topic represents the name
of the directory containing the file Kafka appends the records to.

  Note

Kafka receives the key-value pair messages as raw bytes, stores them that
way, and serves the read requests in the same format. The Kafka broker is
unaware of the type of record that it handles. By merely working with raw
bytes, the brokers don’t spend any time deserializing or serializing the data,
allowing for higher performance. We’ll see in chapter 3 how you can ensure
that topics contain the expected byte format when we cover Schema Registry
in chapter 3.

Topics are partitioned, which is a way of further organizing the topic data
into slots or buckets. A partition is an integer starting at 0. So if a topic has
three partitions, the partitions numbers are 0, 1, and 2. Kafka appends the
partition number to the end of the topic name, creating the same number of
directories as partitions with the form topic-N where the N represents the
partition number.

Kafka brokers have a configuration, log.dirs, where you place the top-level
directory’s name, which will contain all topic-partition directories. Let’s take
a look at an example. We’re going to assume you’ve configured log.dirs



with the value /var/kafka/topic-data and you have a topic named
purchases with three partitions

Listing 2.1. Topic directory structure example

root@broker:/#  tree /var/kafka/topic-data/purchases*

/var/kafka/topic-data/purchases-0

├── 00000000000000000000.index

├── 00000000000000000000.log

├── 00000000000000000000.timeindex

└── leader-epoch-checkpoint

/var/kafka/topic-data/purchases-1

├── 00000000000000000000.index

├── 00000000000000000000.log

├── 00000000000000000000.timeindex

└── leader-epoch-checkpoint

/var/kafka/topic-data/purchases-2

├── 00000000000000000000.index

├── 00000000000000000000.log

├── 00000000000000000000.timeindex

└── leader-epoch-checkpoint

So you can see here, the topic purchases with three partitions ends up as
three directories purchases-0, purchases-1, and purchases-2 on the file
system. So it’s fair to say that the topic name is more of a logical grouping
while the partition is the storage unit.

  Tip

The directory structure shown here was generated by using the tree
command which a small command line tool used to display all contents of a
directory.

While we’ll want to spend some time talking about those directories'
contents, we still have some details to fill in about topic partitions.

Topic partitions are the unit of parallelism in Kafka. For the most part, the
higher the number of partitions, the higher your throughput. As the primary
storage mechanism, topic partitions allow messages to be spread across
several machines. The given topic’s capacity isn’t limited to the available



disk space on a single broker. Also, as mentioned before, replicating data
across several brokers ensures you won’t lose data should a broker lose disks
or die.

We’ll talk about load distribution more when discussing replication, leaders,
and followers later in this chapter. We’ll also cover a new feature, tiered
storage, where data is seamlessly moved to external storage, providing
virtually limitless capacity later in the chapter.

So how does Kafka map records to partitions? The producer client determines
the topic and partition for the record before sending it to the broker. Once the
broker processes the record, it appends it to a file in the corresponding topic-
partition directory.

There are three possible ways of setting the partition for a record:

1. Kafka works with records in key-value pairs. Suppose the key is non-
null (keys are optional). In that case, the producer maps the record to a
partition using the deterministic formula of taking the hash of key
modulo the number of partitions. Using this approach means that records
with the same keys always land on the same partition.

2. When building the ProducerRecord in your application, you can
explicitly set the partition for that record, which the producer then uses
before sending it.

3. If the message has no key and no partition specified then, then partitions
are alternated per batch. I’ll cover how Kafka handles records without
keys and partition assignment in detail in chapter four.

Now that we’ve covered how topic partitions work let’s revisit that records
are always appended at the end of the file. I’m sure you noticed the files in
the directory example with an extension of .log (we’ll talk about how Kafka
names this file in an upcoming section). But these log files aren’t the type
developers think of, where an application prints its status or execution steps.
The term log here is meant as a transaction log, storing a sequence of events
in the order of occurrence. So each topic partition directory contains its own
transaction log. At this point, it would be fair to ask a question about log file
growth. We’ll talk about log file size and management when we cover
segments a bit later in this chapter.



2.3.1 Offsets

As the broker appends each record, it assigns it an id called an offset. An
offset is a number (starting at 0) the broker increments by 1 for each record.
In addition to being a unique id, it represents the logical position in the file.
The term logical position means it’s the nth record in the file, but its physical
location is determined by the size in bytes of the preceding records. We’ll
talk about how brokers use an offset to find the physical position of a record
in a later section. The following illustration demonstrates the concept of
offsets for incoming records:

Figure 2.4. Assigning the offset to incoming records





Since new records always go at the end of the file, they are in order by offset.
Kafka guarantees that records are in order within a partition, but not across
partitions. Since records are in order by offset, we could be tempted to think
they are in order by time as well, but that’s not necessarily the case. The
records are in order by their arrival time at the broker, but not necessarily by
event time. We’ll get more into time semantics in the chapter on clients when
we discuss timestamps. We’ll also cover event-time processing in depth when
we get to the chapters on Kafka Streams.

Consumers use offsets to track the position of records they’ve already
consumed. That way, the broker fetches records starting with an offset one
higher than the last one read by a consumer. Let’s look at an illustration to
explain how offsets work:

Figure 2.5. Offsets indicate where a consumer has left off reading records





In the illustration here, if a consumer reads records with offsets 0-5, in the
next consumer request, the broker only fetches records starting at offset 6.
The offsets used are unique for each consumer and are stored in an internal
topic named {underscore}consumer{underscore}offsets. We’ll go into
more details about consumers and offsets in chapter four.

Now that we’ve covered topics, partitions and offsets, let’s quickly discuss
some trade-offs regarding the number of partitions to use.

2.3.2 Determining the correct number of partitions

Choosing the number of partitions to use when creating a topic is part art and
part science. One of the critical considerations is the amount of data flowing
into a given topic. More data implies more partitions for higher throughput.
But as with anything in life, there are trade-offs.

Increasing the number of partitions increases the number of TCP connections
and open file handles. Additionally, how long it takes to process an incoming
record in a consumer will also determine throughput. If you have
heavyweight processing in your consumer, adding more partitions may help,
but the slower processing will ultimately hinder performance.[2]

Here are some considerations to keep in mind for setting the number of
partitions. You want to choose a high enough number to cover high-
throughput situations, but not so high so that you hit limits for the number of
partitions a broker can handle as you create more and more topics. A good
starting point could be the number of 30, which is evenly divisible by several
numbers, which results in a more even distribution of keys in the processing
layer.[3] We’ll talk more about the importance of key-distribution in later
chapters on clients and Kafka Streams.

At this point, you’ve learned that the broker handles requests from clients and
is the storage layer for the Kafka event streaming platform. You’ve also
learned about topics and partitions and the role they play in the storage layer.

Your next step is to get your hands dirty, producing and consuming records
to see these concepts in action.



  Note

We’ll cover the producer and consumer clients in chapter 4. Console clients
are useful for learning, quick prototypes, and debugging. But in practice,
you’ll use the clients in your code.

2.4 Sending your first messages

To run the following examples, you’ll need to run a Kafka broker. In the
previous edition of this book, the instructions were to download a binary
version of Kafka tar file and extract it locally. In this edition, I’ve opted to
run Kafka via docker instead. Specifically, we’ll use docker compose, which
makes running a multi-container docker application very easy. If you are
running Mac OS or Windows, you can install docker desktop, which includes
docker compose. For more information on installing docker, see the
installation instructions on the docker site docs.docker.com/get-docker/.

Now, let’s get started working with a Kafka broker by producing and
consuming some records.

2.4.1 Creating a topic

Your first step for producing or consuming records is to create a topic. But to
do that, you’ll need running Kafka broker so let’s take care of that now. I’m
going to assume you’ve already installed docker at this point. To start Kafka,
download the docker-compose.yml file from the source code repo here
TOOD-create GitHub repo. After you’ve downloaded the file, open a new
terminal window and CD to the directory with the docker-compose.yml file,
and run this command `docker-compose up -d'.

  Tip

Starting docker-compose with the -d flag runs the docker services in the
background. While it’s OK to start docker-compose without the -d flag, the
containers print their output to the terminal, so you need to open a new



terminal window to do any further operations.

Wait a few seconds, then run this command to open a shell on the docker
broker container: docker-compose exec broker bash.

Using the docker broker container shell you just opened up run this command
to create a topic:

kafka-topics --create --topic first-topic\

 --bootstrap-server localhost:9092\ #1

 --replication-factor 1\ #2

 --partitions 1 #3

  Important

Although you’re using kafka in a docker container, the commands to create
topics and run the console producer and consumer are the same.

Since you’re running a local broker for testing, you don’t need a replication
factor greater than 1. The same thing goes for the number of partitions; at this
point, you only need one partition for this local development.

Now you have a topic, let’s write some records to it.

2.4.2 Producing records on the command line

Now from the same window you ran the create topic command start a console
producer:

kafka-console-producer --topic first-topic\ #1

  --broker-list localhost:9092\ #2

  --property parse.key=true\ #3

  --property key.separator=":" #4

When using the console producer, you need to specify if you are going to
provide keys. Although Kafka works with key-value pairs, the key is optional
and can be null. Since the key and value go on the same line, you also need to
specify how Kafka can parse the key and value by providing a delimiter.



After you enter the above command and hit enter, you should see a prompt
waiting for your input. Enter some text like the following:

 key:my first message

 key:is something

 key:very simple

You type in each line, then hit enter to produce the records. Congratulations,
you have sent your first messages to a Kafka topic! Now let’s consume the
records you just wrote to the topic. Keep the console producer running, as
you’ll use it again in a few minutes.

2.4.3 Consuming records from the command line

Now it’s time to consume the records you just produced. Open a new
terminal window and run the docker-compose exec broker bash command
to get a shell on the broker container. Then run the following command to
start the console consumer:

kafka-console-consumer --topic first-topic\ #1

 --bootstrap-server localhost:9092\ #2

 --from-beginning\ #3

 --property print.key=true\ #4

 --property key.separator="-" #5

You should see the following output on your console:

 key-my first message

 key-is something

 key-very simple

I should briefly talk about why you used the --from-beginning flag. You
produced values before starting the consumer. As a result, you wouldn’t have
seen those messages as the console consumer reads from the end of the topic.
So the --from-beginning parameter sets the consumer to read from the
beginning of the topic. Now go back to the producer window and enter a new
key-value pair. The console window with your consumer will update by
adding the latest record at the end of the current output.

This completes your first example, but let’s go through one more example



where you can see how partitions come into play.

2.4.4 Partitions in action

In the previous exercise, you just produced and consumed some key-value
records, but the topic only has one partition, so you didn’t see the effect of
partitioning. Let’s do one more example, but this time we’ll create a new
topic with two partitions, produce records with different keys, and see the
differences.

You should still have a console producer and console consumer running at
this point. Go ahead and shut both of them down by entering a CTRL+C
command on the keyboard.

Now let’s create a new topic with partitions. Execute the following command
from one of the terminal windows you used to either produce or consume
records:

kafka-topics --create --topic second-topic\

 --bootstrap-server localhost:9092\

 --replication-factor 1\

 --partitions 2

For your next step, let’s start a console consumer.

kafka-console-consumer --topic second-topic\

 --bootstrap-server broker:9092 \

 --property print.key=true \

 --property key.separator="-" \

 --partition 0  #1

This command is not too different from the one you executed before, but
you’re specifying the partition you’ll consume the records from. After
running this command, you won’t see anything on the console until you start
producing records in your next step. Now let’s start up another console
producer.

kafka-console-producer --topic second-topic\

  --broker-list localhost:9092\

  --property parse.key=true\

  --property key.separator=":"



After you’ve started the console producer, enter these key-value pairs:

key1:The lazy

key2:brown fox

key1:jumped over

key2:the lazy dog

You should only see the following records from the console consumer you
have running:

key1:The lazy

key1:jumped over

The reason you don’t see the other records here is the producer assigned them
to partition 1. You can test this for yourself by running executing a CTRL+C in
the terminal window of the current console consumer, then run the following:

kafka-console-consumer --topic second-topic\

 --bootstrap-server broker:9092\

  --property print.key=true\

  --property key.separator="-"\

  --partition 1\

  --from-beginning

You should see the following results:

key2:brown fox

key2:the lazy dog

If you were to re-run the previous consumer without specifying a partition,
you would see all the records produced to the topic. We’ll go into more
details about consumers and topic partitions in chapter 4.

At this point, we’re done with the examples, so you can shut down the
producer and the consumer by entering a CTRL+C command. Then you can
stop all the docker containers now by running docker-compose down.

To quickly recap this exercise, you’ve just worked with the core Kafka
functionality. You produced some records to a topic; then, in another process,
you consumed them. While in practice, you’ll use topics with higher partition
counts, a much higher volume of messages, and something more



sophisticated than the console tools, the concepts are the same.

We’ve also covered the basic unit of storage the broker uses, partitions. We
discussed how Kafka assigns each incoming record a unique, per partition id-
the offset, and always appends records at the end of the topic partition log.
But as more data flows into Kafka, do these files continue to grow
indefinitely? The answer to this question is no, and we’ll cover how the
brokers manage data in the next section.

2.5 Segments

So far, you’ve learned that brokers append incoming records to a topic
partition file. But they don’t just continue to append to the same one creating
huge monolithic files. Instead, brokers break up the files into discrete parts
called segments. Using segments enforcing the data retention settings and
retrieving records by offset for consumers is much easier.

Earlier in the chapter, I stated the broker writes to a partition; it appends the
record to a file. But a more accurate statement is the broker appends the
record to the active segment. The broker creates a new segment when a log
file reaches a specific size (1 MB by default). The broker still uses previous
segments for serving read (consume) requests from consumers. Let’s look at
an illustration of this process:

Figure 2.6. Creating new segments



Following along in the illustration here, the broker appends incoming records
to the currently active segment. Once it reaches the configured size, the
broker creates a segment that is considered the active segment. This process
is repeated indefinitely.

The configuration controlling the size of a segment is log.segment.bytes
which again has a default value of 1MB. Additionally, the broker will create
new segments by time as well. The log.roll.ms or log.roll.hours governs
the maximum time before the broker creates a new segment. The
log.roll.ms is the primary configuration, but it has no default value, but the
log.roll.hours has a default value of 168 hours (7 days). It’s important to



note when a broker creates a new segment based on time, and it means a new
record has a timestamp greater than the earliest timestamp in the currently
active segment plus the log.roll.ms or log.roll.hours configuration. It’s
not based on wall-clock time or when the file was last modified.

  Note

The number of records in a segment won’t necessarily be uniform, as the
illustration might suggest here. In practice, they could vary in the total
number of records. Remember, it’s the total size or the age of the segment
that triggers the broker to create a new one.

Now that we covered how the brokers create segments, we can talk about
their data retention role.

2.5.1 Data retention

As records continue to come into the brokers, the brokers will need to remove
older records to free up space on the file system over time. Brokers use a
two-tiered approach to deleting data, time, and size. For time-based deletion,
Kafka deletes records that are older than a configured retention time based on
the timestamp of the record. If the broker placed all records in one big file, it
would have to scan the file to find all those records eligible for deletion. But
with the records stored in segments, the broker can remove segments where
the latest timestamp in the segment exceeds the configured retention time.
There are three time-based configurations for data deletion presented here in
order of priority:

log.retention.ms — How long to keep a log file in milliseconds
log.retention.minutes — How long to keep a log file in minutes
log.retention.hours — How long to keep a log file in hours

By default, only the log.retention.hours configuration has a default value,
168 (7 days). For size-based retention Kafka has the log.retention.bytes
configuration. By default, it’s set to -1. If you configure both size and time-
based retention, then brokers will delete segments whenever either condition
is met.



So far, we’ve focused our discussion on data retention based on the
elimination of entire segments. If you remember, Kafka records are in key-
value pairs. What if you wanted to retain the latest record per key? That
would mean not removing entire segments but only removing the oldest
records for each key. Kafka provides just such a mechanism called
compacted topics.

2.5.2 Compacted topics

Consider the case where you have keyed data, and you’re receiving updates
for that data over time, meaning a new record with the same key will update
the previous value. For example, a stock ticker symbol could be the key, and
the price per share would be the regularly updated value. Imagine you’re
using that information to display stock values, and you have a crash or restart
—you need to be able to start back up with the latest data for each key.[4]

If you use the deletion policy, a broker could remove a segment between the
last update and the application’s crash or restart. You wouldn’t have all the
records on startup. It would be better to retain the final known value for a
given key, treating the next record with the same key as an update to a
database table.

Updating records by key is the behavior that compacted topics (logs) deliver.
Instead of taking a coarse-grained approach and deleting entire segments
based on time or size, compaction is more fine-grained and deletes old
records per key in a log. At a high level, the log cleaner (a pool of threads)
runs in the background, recopying log-segment files and removing records if
there’s an occurrence later in the log with the same key. Figure 2.13
illustrates how log compaction retains the most recent message for each key.

Figure 2.7. On the left is a log before compaction—you’ll notice duplicate keys with different
values. These duplicates are updates. On the right is after compaction—retaining the latest value
for each key, but it’s smaller in size.



This approach guarantees that the last record for a given key is in the log.
You can specify log retention per topic, so it’s entirely possible to use time-
based retention and other ones using compaction.

By default, the log cleaner is enabled. To use compaction for a topic, you’ll
need to set the log.cleanup.policy=compact property when creating it.



Compaction is used in Kafka Streams when using state stores, but you won’t
be creating those logs/topics yourself—the framework handles that task.
Nevertheless, it’s essential to understand how compaction works. Log
compaction is a broad subject, and we’ve only touched on it here. For more
information, see the Kafka documentation:
kafka.apache.org/documentation/{hash}compaction.

  Note

With a cleanup.policy of compact, you might wonder how you can remove
a record from the log. You delete with compaction by using a null value for
the given key, creating a tombstone marker. Tombstones ensure that
compaction removes prior records with the same key. The tombstone marker
itself is removed later to free up space.

The key takeaway from this section is that if you have independent,
standalone events or messages, use log deletion. If you have updates to
events or messages, you’ll want to use log compaction.

Now that we’ve covered how Kafka brokers manage data using segments, it
would be an excellent time to reconsider and discuss the topic-partition
directories' contents.

2.5.3 Topic partition directory contents

Earlier in this chapter, we discussed that a topic is a logical grouping for
records, and the partition is the actual physical unit of storage. Kafka brokers
append each incoming record to a file in a directory corresponding to the
topic and partition specified in the record. For review, here are the contents of
a topic-partition

Listing 2.2. Contents of topic-partition directory

/var/kafka/topic-data/purchases-0

├── 00000000000000000000.index

├── 00000000000000000000.log

├── 00000000000000000000.timeindex



  Note

In practice, you’ll most likely not interact with a Kafka broker on this level.
We’re going into this level of detail to provide a deeper understanding of how
broker storage works.

We already know the log file contains the Kafka records, but what are the
index and timeindex files? When a broker appends a record, it stores other
fields along with the key and value. Three of those fields are the offset
(which we’ve already covered), the size, and the record’s physical position in
the segment. The index is a memory-mapped file that contains a mapping of
offset to position. The timeindex is also a memory-mapped file containing a
mapping of timestamp to offset.

Let’s look at the index files first.

Figure 2.8. Searching for start point based on offset 2



Brokers use the index files to find the starting point for retrieving records
based on the given offset. The brokers do a binary search in the index file,
looking for an index-position pair with the largest offset that is less than or
equal to the target offset. The offset stored in the index file is relative to the
base offset. That means if the base offset is 100, offset 101 is stored as 1,



offset 102 is stored as 2, etc. Using the relative offset, the index file can use
two 4-byte entries, one for the offset and the other for the position. The base
offset is the number used to name the file, which we’ll cover soon.

The timeindex is a memory-mapped file that maintains a mapping of
timestamp to offset.

  Note

A memory-mapped file is a special file in Java that stores a portion of the file
in memory allowing for faster reads from the file. For a more detailed
description read the excellent entry www.geeksforgeeks.org/what-is-
memory-mapped-file-in-java/ from GeeksForGeeks site.

Figure 2.9. Timeindex file



The file’s physical layout is an 8-byte timestamp and a 4-byte entry for the
"relative" offset. The brokers search for records by looking at the timestamp
of the earliest segment. If the timestamp is smaller than the target timestamp,
the broker does a binary search on the timeindex file looking for the closest
entry.

So what about the names then? The broker names these files based on the
first offset contained in the log file. A segment in Kafka comprises the log,
index, and timeindex files. So in our example directory listing above, there
is one active segment. Once the broker creates a new segment, the directory
would look something like this:



Listing 2.3. Contents of the directory after creating a new segment

/var/kafka/topic-data/purchases-0

├── 00000000000000000000.index

├── 00000000000000000000.log

├── 00000000000000000000.timeindex

├── 00000000000000037348.index

├── 00000000000000037348.log

├── 00000000000000037348.timeindex

Based on the directory structure above, the first segment contains records
with offset 0-37347, and in the second segment, the offsets start at 37348.

The files stored in the topic partition directory are stored in a binary format
and aren’t suitable for viewing. As I mentioned before, you usually won’t
interact with the files on the broker, but sometimes when looking into an
issue, you may need to view the files' contents.

  Important

You should never modify or directly access the files stored in the topic-
partition directory. Only use the tools provided by Kafka to view the
contents.

2.6 Tiered storage

We’ve discussed that brokers are the storage layer in the Kafka architecture.
We’ve also covered how the brokers store data in immutable, append-only
files, and how brokers manage data growth by deleting segments when the
data reaches an age exceeding the configured retention time. But as Kafka
can be used for your data’s central nervous system, meaning all data flows
into Kafka, the disk space requirements will continue to grow. Additionally,
you might want to keep the data longer but can’t due to the need to make
space for newly arriving records.

This situation means that Kafka users wanting to keep data longer than the
required retention period need to offload data from the cluster to more
scalable, long term storage. For moving the data, one could use Kafka



Connect (which we’ll cover in a later chapter), but long term storage requires
building different applications to access that data.

There is current work underway called Tiered Storage. I’ll only give a brief
description here, but for more details, you can read KIP-405
(cwiki.apache.org/confluence/display/KAFKA/KIP-
405%3A+Kafka+Tiered+Storage). At a high-level, the proposal is for the
Kafka brokers to have a concept of local and remote storage. Local storage is
the same as the brokers use today, but the remote storage would be something
more scalable, say S3, for example, but the Kafka brokers still manage it.

The concept is that over time, the brokers migrate older data to the remote
storage. This tiered storage approach is essential for two reasons. First, the
data migration is handled by the Kafka brokers as part of normal operations.
There is no need to set up a separate process to move older data. Secondly,
the older data is still accessible via the Kafka brokers, so no additional
applications are required to process older data. Additionally, the use of tiered
storage will be seamless to client applications. They won’t know or even
need to know if the records consumed are local or from the tiered storage.

Using the tiered storage approach effectively gives Kafka brokers the ability
to have infinite storage capabilities. Another benefit of tiered storage, which
might not be evident at first blush, is the improvement in elasticity. When
adding a new broker, full partitions needed to get moved across the network
before tiered storage. Remember from our conversation from before, Kafka
distributes topic-partitions among the brokers. So adding a new broker means
calculating new assignments and moving the data accordingly. But with
tiered storage, most of the segments beyond the active ones will be in the
storage tier. This means there is much less data that needs to get moved
around, so changing the number of brokers will be much faster.

As of the writing of this book (November 2020), tiered storage for Apache
Kafka is currently underway. Still, given the project’s scope, the final
delivery of the tiered storage feature isn’t expected until mid-2021. Again for
the reader interested in the details involved in the tiered storage feature, I
encourage you to read the details found in KIP-405 KIP-405
(cwiki.apache.org/confluence/display/KAFKA/KIP-
405%3A+Kafka+Tiered+Storage).



2.7 Cluster Metadata

Kafka is a distributed system, and to manage all activity and state in the
cluster, it requires metadata. But the metadata is external to the working
brokers, so it uses a metadata server. Having a metadata server to keep this
state is integral to Kafka’s architecture. As of the writing of this book, Kafka
uses ZooKeeper for metadata management. It’s through the storage and use
of metadata that enables Kafka to have leader brokers and to do such things
as track the replication of topics.

The use of metadata in a cluster is involved in the following aspects of Kafka
operations:

Cluster membership — Joining a cluster and maintaining membership in
a cluster. If a broker becomes unavailable, ZooKeeper removes the
broker from cluster membership.
Topic configuration — Keeping track of the topics in a cluster, which
broker is the leader for a topic, how many partitions there are for a topic,
and any specific configuration overrides for a topic.
Access control — Identifying which users (a person or other software)
can read from and write to particular topics.

  Note

The term metadata manager is a bit generic. Up until the writing of this book,
Kafka used ZooKeeper (zookeeper.apache.org/) for metadata management.
There is an effort underway to remove ZooKeeper and use Kafka itself to
store the cluster metadata. KIP-500
(cwiki.apache.org/confluence/display/KAFKA/KIP-
500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum)
describes the details. This blog post, www.confluent.io/blog/removing-
zookeeper-dependency-in-kafka/, describes the process of how and when the
changes to Kafka occur. Since most users don’t work at the level of cluster
metadata, I feel that some knowledge of *how* Kafka uses metadata is
sufficient.



This has been a quick overview of how Kafka manages metadata. I don’t
want to go into too much detail about metadata management as my approach
to this book is more from the developer’s point of view and not someone who
will manage a Kafka cluster. Now that we’ve briefly discussed Kafka’s need
for metadata and how it’s used let’s resume our discussion on leaders and
followers and their role in replication.

2.8 Leaders and followers

So far, we’ve discussed the role topics play in Kafka and how and why topics
have partitions. You’ve seen that partitions aren’t all located on one machine
but are spread out on brokers throughout the cluster. Now it’s time to look at
how Kafka provides data availability in the face of machine failures.

In the Kafka cluster for each topic-partition, one broker is the leader, and the
rest are followers.

Figure 2.10. Leader and follower example





In figure 10 above, we have a simplified view of the leader and follower
concept. The lead broker for a topic-partition handles all of the produce and
consume requests (although it is possible to have consumers work with
followers, and we’ll cover that in the chapter on clients). The following
brokers replicate records from the leader for a given topic partition. Kafka
uses this leader and follower relationship for data integrity. It’s important to
remember the leadership for the topic- partitions are spread around the
cluster. No single broker is the leader for all partitions of a given topic.

But before we discuss how leaders, followers, and replication work, we need
to consider what Kafka does to achieve this.

2.8.1 Replication

I mentioned in the leaders and followers section that topic-partitions have a
leader broker and one or more followers. Illustration 10 above shows this
concept. Once the leader adds records to its log, the followers read from the
leader.

Kafka replicates records among brokers to ensure data availability, should a
broker in the cluster fail. Figure 11 below demonstrates the replication flow
between brokers. A user configuration determines the replication level, but
it’s recommended to use a setting of three. With a replication factor of three,
the lead broker is considered a replica one, and two followers are replica two
and three.

Figure 2.11. The Kafka replication process





The Kafka replication process is straightforward. Brokers following a topic-
partition consume messages from the topic-partition leader. After the leader
appends new records to its log, followers consume from the leader and
append the new records to their log. After the followers have completed
adding the records, their logs replicate the leader’s log with the same data and
offsets. When fully caught up to the leader, these following brokers are
considered an in-sync replica or ISR.

When a producer sends a batch of records, the leader must first append those
records before the followers can replicate them. There is a small window of
time where the leader will be ahead of the followers. This illustration
demonstrates this concept:

Figure 2.12. The leader may have a few unreplicated messages in its topic-partition





In practical terms, this small lag of replication records is no issue. But, we
have to ensure that it must not fall too far behind, as this could indicate an
issue with the follower. So how do we determine what’s not too far behind?
Kafka brokers have a configuration replica.lag.time.max.ms.

Figure 2.13. Followers must issue a fetch request or be caught up withing lag time configuration





The replica lag time configuration sets an upper-bound how long followers
have to either issue a fetch request or be entirely caught-up for the leader’s
log. Followers failing to do so within the configured time are considered too
far behind and removed from the in-sync replica (ISR) list.

As I stated above, follower brokers who are caught up with their leader
broker are considered an in-sync replica or ISR. ISR brokers are eligible to be
elected leader should the current leader fail or become unavailable.[5]

In Kafka, consumers never see records that haven’t been written by all ISRs.
The offset of the latest record stored by all replicas is known as the high-
water mark, and it represents the highest offset accessible to consumers. This
property of Kafka means that consumers don’t worry about recently read
records disappearing. As an example, consider the situation in illustration 11
above. Since offsets 8-10 haven’t been written to all the replicas, 7 is the
highest offset available to consumers of that topic.

Should the lead broker become unavailable or die before records 8-10 are
persisted, that means an acknowledgment isn’t sent to the producer, and it
will retry sending the records. There’s a little more to this scenario, and we’ll
talk about it more in the chapter on clients.

If the leader for a topic-partition fails, a follower has a complete replica of the
leader’s log. But we should explore the relationship between leaders,
followers, and replicas.

Replication and acknowledgments

When writing records to Kafka, the producer can wait for acknowledgment of
record persistence of none, some, or all for in-sync replicas. These different
settings allow for the producer to trade-off latency for data durability. But
there is a crucial point to consider.

The leader of a topic-partition is considered a replica itself. The configuration
min.insync.replicas specifies how many replicas must be in-sync to
consider a record committed. The default setting for min.insync.replicas is



one. Assuming a broker cluster size of three and a replication-factor of three
with a setting of acks=all, only the leader must acknowledge the record. The
following illustration demonstrates this scenario:

Figure 2.14. Acks set to "all" with default in-sync replicas





How can something like the above happen? Imagine that the two followers
temporarily lag enough for the controller to remove them from the ISR. This
means that even with setting acks=all on the producer, there is a potential
for data loss should the leader fail before the followers have a chance to
recover and become in sync again.

To prevent such a scenario, you need to set the min.insync.replicas=2
Setting the min in-sync replicas configuration to two means that the leader
checks the number of in-sync replicas before appending a new record to its
log. If the required number of in-sync replicas isn’t met at this point, the
leader doesn’t process the produce request. Instead, the leader throws a
NotEnoughReplicasException, and the producer will retry the request.

Let’s look at another illustration to help get a clear idea of what is going on:

Figure 2.15. Setting Min ISR to a value greater than one increases data durability





As you can see in figure 14, a batch of records arrives. But the leader won’t
append them because there aren’t enough in-sync replicas. By doing so, your
data durability increases as the produce request won’t succeed until there are
enough in-sync replicas. This discussion of message acknowledgments and
in-sync replicas is broker-centric. In chapter 4, when we discuss clients, we’ll
revisit this idea from the producer client’s perspective to discuss the
performance trade-offs.

2.9 Checking for a healthy broker

At the beginning of the chapter, we covered how a Kafka broker handles
requests from clients and process them in the order of their arrival. Kafka
brokers handle several types of requests, for example:

Produce - A request to append records to the log
Fetch - A request to consume records from a given offset
Metadata - A request for the cluster’s current state - broker leaders for
topic-partitions, topic partitions available, etc.

These are a small subset of all possible requests made to the broker. The
broker processes requests in first-in-first-out processing order, passing them
off to the appropriate handler based on the request type.

Simply put, a client makes a request, and the broker responds. If they come in
faster than the broker can reply, the requests queue up. Internally, Kafka has
a thread-pool dedicated to handling the incoming requests. This process leads
us to the first line of checking for issues should your Kafka cluster
performance suffer.

With a distributed system, you need to embrace failure as a way of life.
However, this doesn’t mean that the system should shut down at the first sign
of an issue. Network partitions are not uncommon in a distributed system,
and frequently they resolve quickly. So it makes sense to have a notion of
retryable errors vs. fatal errors. If you are experiencing issues with your
Kafka installation, timeouts for producing or consuming records, for
example, where’s the first place to look?



2.9.1 Request handler idle percentage

When you are experiencing issues with a Kafka based application, a good
first check is to examine the RequestHandlerAvgIdlePercent JMX metric.

The RequestHandlerAvgIdlePercent metric provides the average fraction of
time the threads handling requests are idle, with a number between 0 and 1.
Under normal conditions, you’d expect to see an idle ratio of .7 - .9,
indicating that the broker handles requests quickly. If the request-idle number
hits zero, there are no threads left for processing incoming requests, which
means the request queue continues to increase. A massive request queue is
problematic, as that means longer response times and possible timeouts.

2.9.2 Network handler idle percentage

The NetworkProcessorAvgIdlePercent JMX metric is analogous to the
request-idle metric. The network-idle metric measures the average amount of
time the network processors are busy. In the best scenarios, you want to see
the number above 0.5 if it’s consistently below 0.5 that indicates a problem.

2.9.3 Under replicated partitions

The UnderReplicatedPartitions JMX metric represents the number of
partitions belonging to a broker removed from the ISR (in-sync replicas). We
discussed ISR and replication in the Replication section. A value higher
than zero means a Kafka broker is not keeping up with replicating for
assigned following topic-partitions. Causes of a non-zero
UnderReplicatedPartitions metric could indicate network issues, or the
broker is overloaded and can’t keep up. Note that you always want to see the
URP number at zero.

2.10 Summary

The Kafka broker is the storage layer and also handles requests from
clients for producing (writing) and consuming (reading) records
Kafka brokers receive records as bytes, stores them in the same format,



and sends them out for consume requests in byte format as well
Kafka brokers durably store records in topics.
Topics represent a directory on the file system and are partitioned,
meaning the records in a topic are placed in different buckets
Kafka uses partitions for throughput and for distributing the load as
topic-partitions are spread out on different brokers
Kafka brokers replicate data from each other for durable storage

[2] Jun Rao, "How to Choose the Number of Topics/Partitions in a Kafka
Cluster?" mng.bz/4C03.

[3] Michael Noll, "https://www.confluent.io/blog/kafka-streams-tables-part-2-
topics-partitions-and-storage-fundamentals/"

[4] Kafka documentation, "Log Compaction,"
kafka.apache.org/documentation/#compaction.

[5] Kafka documentation, "Replication,"
kafka.apache.org/documentation/#replication.



3 Schema Registry
This chapter covers

Using bytes means serialization rules
What is a schema and why you need to use one
What is Schema Registry?
Ensuring compatibility with changes - schema evolution
Understanding subject names
Reusing schemas with references

In chapter 2, you learned about the heart of the Kafka streaming platform, the
Kafka broker. In particular, you learned how the broker is the storage layer
appending incoming messages to a topic, serving as an immutable,
distributed log of events. A topic represents the directory containing the log
file(s).

Since the producers send messages over the network, they need to be
serialized first into binary format, in other words an array of bytes. The Kafka
broker does not change the messages in any way, it stores them in the same
format. It’s the same when the broker responds to fetch requests from
consumers, it retrieves the already serialized messages and sends them over
the network.

By only working with messages as arrays of bytes, the broker is completely
agnostic to the data type the messages represent and completely independent
of the applications that are producing and consuming the messages and the
programming languages those applications use. By decoupling the broker
from the data format, any client using the Kafka protocol can produce or
consume messages.

While bytes are great for storage and transport over the network, developers
are far more efficient working at a higher level of abstraction; the object. So
where does this transformation from object to bytes and bytes to object occur
then? At the client level in the producers and consumers of messages.



Figure 3.1. The conversion of objects to bytes and bytes to objects happens at the client level

Looking at this illustration, the message producer uses an instance of a
Serializer to convert the message object into bytes before sending it to the
topic on the broker. The message consumer does the opposite process, it
receives bytes from the topic, and uses an instance of a Deserializer to
convert the bytes back into the same object format.



The producer and consumer are decoupled from the (de)serializers; they
simply call either the serialize or deserialize methods.

Figure 3.2. The serializer and deserializer are agnostic of the producer and consumer and
perform the expected action when the serialize and deserialize methods are called



As depicted in this illustration, the producer expects to use an instance of the
Serializer interface and just calls the Serializer.serialize method
passing in an object of a given type and getting back bytes. The consumer
works with the Deserializer interface. The consumer provides an array of



bytes to the Deserializer.deserialize method and receives an object of a
given type in return.

The producer and consumer get the (de)serializers via configuration
parameters and we’ll see examples of this later in the chapter.

  Note

I’m mentioning producers and consumers here and throughout the chapter,
but we’ll only go into enough detail to understand the context required for
this chapter. We’ll cover producer and consumer client details in the next
chapter.

The point I’m trying to emphasize here is that for a given topic the object
type the producer serializes is expected to be the exact same object type that a
consumer deserializes. Since producers and consumers are completely
agnostic of each other these messages or event domain objects represent an
implicit contract between the producers and consumers.

So now the question is does something exist that developers of producers and
consumers can use that informs them of the proper structure of messages?
The answer to that question is yes, the schema.

3.1 What is a schema and why you need to use one

When you mention the word schema to developers, there’s a good chance
their first thought is of database schemas. A database schema describes the
structure of the database, including the names and startups of the columns in
database tables and the relationship between tables. But the schema I’m
referring to here, while similar in purpose, is not quite the same thing.

For our purposes what I’m referring to is a language agnostic description of
an object, including the name, the fields on the object and the type of each
field. Here’s an example of a potential schema in json format

Listing 3.1. Basic example of a schema in json format



{

"name":"Person",   #1

  "fields": [      #2

    {"name": "name", "type":"string"}, #3

    {"name": "age", "type": "int"},

    {"name": "email", "type":"string"}

  ]

}

Here our fictional schema describes an object named Person with fields we’d
expect to find on such an object. Now we have a structured description of an
object that producers and consumers can use as an agreement or contract on
what the object should look like before and after serialization. I’ll cover
details on how you use schemas in message construction and (de)serialization
in an upcoming section.

But for now I’d like review some key points we’ve established so far:

The Kafka broker only works with messages in binary format (byte
arrays)
Kafka producers and consumers are responsible for the (de)serialization
of messages. Additionally, since these two are unaware of each other,
the records form a contract between them.

And we also learned that we can make the contract between producers and
consumers explicit by using a schema. So we have our why for using a
schema, but what we’ve defined so far is a bit abstract and we need to answer
these questions for the how :

How do you put schemas to use in your application development
lifecyle?
Given that serialization and deserialization is decoupled from the Kafka
producers and consumers how can they use serialization that ensures
messages are in the correct format?
How do you enforce the correct version of a schema to use? After all
changes are inevitable

The answer to these how questions is Schema Registry.



3.1.1 What is Schema Registry?

Schema Registry provides a centralized application for storing schemas,
schema validation and sane schema evolution (message structure changes)
procedures. Perhaps more importantly, it serves as the source of truth of
schemas that producer and consumer clients can easily discover. Schema
Registry provides serializers and deserializers that you can configure Kafka
Producers and Kafka Consumers easing the development for applications
working with Kafka.

The Schema Registry serializing code supports schemas from the
serialization frameworks Avro (avro.apache.org/docs/current/) and Protocol
Buffers (developers.google.com/protocol-buffers). Note that I’ll refer to
Protocol Buffers as "Protobuf" going forward. Additionally Schema Registry
supports schemas written using the JSON Schema (json-schema.org/), but
this is more of a specification vs a framework. I’ll get into working with
Avro, Protobuf JSON Schema as we progress through the chapter, but for
now let’s take a high-level view of how Schema Registry works:

Figure 3.3. Schema registry ensures consistent data format between producers and consumers



Let’s quickly walk through how Schema Registry works based on this
illustration

1. As a produce calls the serialize method, a Schema Registry aware
serializer retrieves the schema (via HTTP) and stores it in its local cache

2. The serializer embedded in the producer serializes the record
3. The producer sends the serialized message (bytes) to Kafka
4. A consumer reads in the bytes



5. The Schema Registry aware deserializer in the consumer retrieves the
schema and stores it in its local cache

6. The consumer deserializes the the bytes based on the schema
7. The Schema Registry servers produces a message with the schema so

that it’s stored in the __schemas topic

  Tip

While I’m presenting Schema Registry as an important part of the Kafka
event streaming platform, it’s not required. Remember Kafka producers and
consumers are decoupled from the serializers and deserializers they use. As
long as you provide a class that implements the appropriate interface, they’ll
work fine with the producer or consumer. But you will lose the validation
checks that come from using Schema Registry. I’ll cover serializing without
Schema Registry at the end of this chapter.

While the previous illustration gave you a good idea of how schema registry
works, there’s an important detail I’d like to point out here. While it’s true
that the serializer or deserializer will reach out to Schema Registry to retrieve
a schema for a given record type, it only does so once, the first time it
encounters a record type it doesn’t have the schema for. After that, the
schema needed for (de)serialization operations is retrieved from local cache.

3.1.2 Getting Schema Registry

Our first step is to get Schema Registry up and running. Again you’ll use
docker-compose to speed up your learning and development process. We’ll
cover installing Schema Registry from a binary download and other options
in an appendix. But for now just grab the docker-compose.yml file from the
chapter_3 directory in the source code for the book.

This file is very similar to the docker-compose.yml file you used in chapter
two. But in addition to the Zookeeper and Kafka images, there is an entry for
a Schema Registry image as well. Go ahead and run docker-compose up -d.
To refresh your memory about the docker commands the -d is for "detached"
mode meaning the docker containers run in the background freeing up the



terminal window you’ve executed the command in.

3.1.3 Architecture

Before we go into the details of how you work with Schema Registry, it
would be good to get high level view of how it’s designed. Schema Registry
is a distributed application that lives outside the Kafka brokers. Clients
communicate with Schema Registry via a REST API. A client could be a
serializer (producer), deserializer (consumer), a build tool plugin, or a
command line request using curl. I’ll cover using build tool plugins, gradle in
this case, in an upcoming section soon.

Schema Registry uses Kafka as storage (write-ahead-log) of all its schemas in
__schemas which is a single partitioned, compacted topic. It has a primary
architecture meaning there is one leader node in the deployment and the other
nodes are secondary.

  Note

The double underscore characters are a Kafka topic naming convention
denoting internal topics not meant for public consumption. From this point
forward we’ll refer to this topic simply as schemas.

What this means is that only the primary node in the deployment writes to the
schemas topic. Any node in the deployment will accept a request to store or
update a schema, but secondary nodes forward the request to the primary
node. Let’s look at an illustration to demonstrate:

Figure 3.4. Schema Registry is a distributed application where only the primary node
communicates with Kafka



Anytime a client registers or updates a schema, the primary node produces a
record to the {underscore}schemas topic. Schema Registry uses a Kafka
producer for writing and all the nodes use a consumer for reading updates. So
you can see that Schema Registry’s local state is backed up in a Kafka topic
making schemas very durable.



  Note

When working with Schema Registry throughout all the examples in the book
you’ll only use a single node deployment suitable for local development.

But all Schema Registry nodes serve read requests from clients. If any
secondary nodes receive a registration or update request, it is forwarded to
the primary node. Then the secondary node returns the response from the
primary node. Let’s take a look at an illustration of this architecture to
solidify your mental model of how this works:

Figure 3.5. All Schema Registry nodes can serve read requests





Now that we’ve given an overview of the architecture, let’s get to work by
issuing a few basic commands using Schema Registry REST API.

3.1.4 Communication - Using Schema Registry’s REST API

So far we’ve covered how Schema Registry works, but now it’s time to see it
in action by uploading a schema then running some additional commands
available to get more information about your uploaded schema. For the initial
commands you’ll use curl and jq in a terminal window.

  Note

curl (curl.se/) is a command line utility for working with data via a URLs. jq
(stedolan.github.io/jq/) is a command-line json processor. For installing jq for
your platform you can visit the jq download site
stedolan.github.io/jq/download/. For curl it should come installed on
Windows 10+ and Mac Os. On Linux you can install via a package manager.
If you are using Mac OS you can install both using homebrew - brew.sh/.

In later sections you’ll use a gradle plugin for your interactions with Schema
Registry. After you get an idea of how the different REST API calls work,
you’ll move on to using the gradle plugins and using some basic producer
and consumer examples to see the serialization in action.

Typically you’ll use the build tool plugins for performing Schema Registry
actions. First they make he development process much faster rather than
having run the API calls from the command line, and secondly they will
automatically generate source code from schemas. We’ll cover using build
tool plugins in an upcoming section.

  Note

There are Maven and Gradle plugins for working with Schema Registry, but
the source code project for the book uses Gradle, so that’s the plugin you’ll
use.



Register a schema

Before we get started make sure you’ve run docker-compose up -d so that
we’ll have a Schema Registry instance running. But there’s going to be
nothing registered so your first step is to register a schema. Let’s have a little
fun and create a schema for Marvel Comic super heroes, the Avengers.
You’ll use Avro for your first schema and let’s take a second now to discuss
the format:

Listing 3.2. Avro schema for Avengers

{"namespace": "bbejeck.chapter_3", #1

 "type": "record",          #2

 "name": "Avenger",         #3

 "fields": [                #4

     {"name": "name", "type": "string"},

     {"name": "real_name", "type": "string"},         #5

     {"name": "movies", "type":

                      {"type": "array", "items": "string"},

      "default": []   #6

    }

  ]

}

You define Avro schemas in JSON format. You’ll use this same schema file
in a upcoming section when we discuss the gradle plugin for code generation
and interactions with Schema Registry. Since Schema Registry supports
Protobuf and JSON Schema formats as well let’s take a look at the same type
in those schema formats here as well:

Listing 3.3. Protobuf schema for Avengers

syntax = "proto3";  #1

package bbejeck.chapter_3.proto;  #2

option java_outer_classname = "AvengerProto"; #3

message Avenger {   #4

    string name = 1;  #5

    string real_name = 2;

    repeated string movies = 3;  #6



}

The Protobuf schema looks closer to regular code as the format is not JSON.
Protobuf uses the numbers you see assigned to the fields to identify those
fields in the message binary format. While Avro specification allows for
setting default values, in Protobuf (version 3), every field is considered
optional, but you don’t provide a default value. Instead, Protobuf uses the
type of the field to determine the default. For example the default for a
numerical field is 0, for strings it’s an empty string and repeated fields are an
empty list.

  Note

Protobuf is a deep subject and since this book is about the Kafka event
streaming pattern, I’ll only cover enough of the Protobuf specification for
you to get started and feel comfortable using it. For full details you can read
the language guide found here developers.google.com/protocol-
buffers/docs/proto3.

Now let’s take a look at the JSON Schema version:

Listing 3.4. JSON Schema schema for Avengers

{

  "$schema": "http://json-schema.org/draft-07/schema#",  #1

  "title": "Avenger",

  "description": "A JSON schema of Avenger object",

  "type": "object",             #2

  "javaType": "bbejeck.chapter_3.json.SimpleAvengerJson", #3

  "properties": {     #4

    "name": {

      "type": "string"

    },

    "realName": {

      "type": "string"

    },

    "movies": {

      "type": "array",

      "items": {

        "type": "string"



      },

      "default": []  #5

    }

  },

  "required": [

    "name",

    "realName"

  ]

}

The JSON Schema schema resembles the Avro version as both use JSON for
the schema file. The biggest difference between the two is that in the JSON
Schema you list the object fields under a properties element vs. a fields
array and in the fields themselves you simply declare the name vs. having a
name element.

  Note

Please note there is a difference between a schema written in JSON format
and one that follows the JSON Schema format. JSON Schema is "a
vocabulary that allows you to annotate and validate JSON documents.". As
with Avro and Protobuf, I’m going to focus on enough for you to get going
using it in your projects, but for in-depth coverage you should visit json-
schema.org/ for more information.

I’ve shown the different schema formats here for comparison. But in the rest
of the chapter, I’ll usually only show one version of a schema in an example
to save space. But the source code will contain examples for all three
supported types.

Now that we’ve reviewed the schemas, let’s go ahead and register one. The
command to register a schema with REST API on the command-line looks
like this

Listing 3.5. Register a schema on the command line

jq '. | {schema: tojson}' src/main/avro/avenger.avsc | \   #1

curl -s -X POST http://localhost:8081/subjects/avro-avengers-value/versions\  #2

         -H "Content-Type: application/vnd.schemaregistry.v1+json" \  #3

         -d @-  \ #4



         | jq #5

The result you see from running this command should look like this:

Listing 3.6. Expected response from uploading a schema

{

  "id": 1

}

The response from the POST request is the id that Schema Registry assigned
to the new schema. Schema Registry assigns a unique id (a monotonically
increasing number) to each newly added schema. Clients use this id for
storing schemas in their local cache.

Before we move on to another command I want to call your attention to
annotation 2, specifically this part - subjects/avro-avengers-value/, it
specifies the subject name for the schema. Schema Registry uses the subject
name to manage the scope of any changes made to a schema. In this case it’s
confined to avro-avengers-value which means that values (in the key-value
pairs) going into the avro-avengers topic need to be in the format of the
registered schema. We’ll cover subject names and the role they have in
making changes in an upcoming section.

Next, let’s take a look at some of the available commands you can use to
retrieve information from Schema Registry.

Imagine you are working on building a new application to work with Kafka.
You’ve heard about Schema Registry and you’d like to take a look at
particular schema one of your co-workers developed, but you can’t remember
the name and it’s the weekend and you don’t want to bother anyone. What
you can do is list all the subjects of registered schemas with the following
command:

Listing 3.7. Listing the subjects of registered schemas

curl -s "http://localhost:8081/subjects" | jq

The response from this command is a json array of all the subjects. Since



we’ve only registered once schema so far the results should look like this

[

  "avro-avengers-value"

]

Great, you find here what you are looking for, the schema registered for the
avro-avengers topic.

Now let’s consider there’s been some changes to the latest schema and you’d
like to see what the previous version was. The problem is you don’t know the
version history. The next command shows you all of versions for a given
schema

Listing 3.8. Getting all versions for a given schema

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions" | jq

This command returns a json array of the versions of the given schema. In
our case here the results should look like this:

[ 1 ]

Now that you have the version number you need, now you can run another
command to retrieve the schema at a specific version:

Listing 3.9. Retrieving a specific version of a schema

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions/1"\

 | jq '.'

After running this command you should see something resembling this:

{

  "subject": "avro-avengers-value",

  "version": 1,

  "id": 1,

  "schema": "{\"type\":\"record\",\"name\":\"AvengerAvro\",

      \"namespace\":\"bbejeck.chapter_3.avro\",\"fields\"

      :[{\"name\":\"name\",\"type\":\"string\"},{\"name\"

        :\"real_name\",\"type\":\"string\"},{\"name\"

          :\"movies\",\"type\":{\"type\":\"array\"



            ,\"items\":\"string\"},\"default\":[]}]}"

}

The value for the schema field is formatted as a string, so the quotes are
escaped and all new-line characters are removed.

With a couple of quick commands from a console window, you’ve been able
to find a schema, determine the version history and view the schema of a
particular version.

As a side note, if you don’t care about previous versions of a schema and you
only want the latest one, you don’t need to know the actual latest version
number. You can use the following REST API call to retrieve the latest
schema:

Listing 3.10. Getting the latest version of a schema

curl -s "http://localhost:8081/subjects/avro-avengers-value/

  versions/latest" | jq '.'

I won’t show the results of this command here, as it is identical to the
previous command.

That has been a quick tour of some of the commands available in the REST
API for Schema Registry. This just a small subset of the available commands.
For a full reference go to docs.confluent.io/platform/current/schema-
registry/develop/api.html#sr-api-reference.

Next we’ll move on to using gradle plugins for working with Schema
Registry and Avro, Protobuf and JSON Schema schemas.

3.1.5 Plugins and serialization platform tools

So far you’ve learned that the event objects written by producers and read by
consumers represent the contract between the producer and consumer clients.
You’ve also learned that this "implicit" contract can be a concrete one in the
form of a schema. Additionally you’ve seen how you can use Schema
Registry to store the schemas and make them available to the producer and
consumer clients when the need to serialize and deserialize records.



In the upcoming sections you’ll see even more functionality with Schema
Registry. I’m referring to testing schemas for compatibility, different
compatibility modes and how it can make changing or evolving a schema a
relatively painless process for the involved producer and consumer clients.

But so far, you’ve only worked with a schema file and that’s still a bit
abstract. As I said earlier in the chapter, developers work with objects when
building applications. So our next step is to see how we can convert these
schema files into concrete objects you can use in an application.

Schema Registry supports schemas in Avro, Protobuf and JSON Schema
format. Avro and Protobuf are serialization platforms that provide tooling for
working with schemas in their respective formats. One of the most important
tools is the ability to generate objects from the schemas.

Since JSON Schema is a standard and not a library or platform you’ll need to
use an open source tool for code generation. For this book we’re using the
github.com/eirnym/js2p-gradle project. For (de)serialization without Schema
Registry I would recommend using ObjectMapper from the
github.com/FasterXML/jackson-databind project.

Generating code from the schema makes your life as developer easier, as it
automates the repetitive, boilerplate process of creating domain objects.
Additionally since you maintain the schemas in source control (git in our
case), the chance for error, such as making a field string type when it should
be a long, when creating the domain objects is all but eliminated.

Also when making a change to a schema, you just commit the change and
other developers pull the update and re-generate the code and everyone is
unsung fairly quickly.

In this book we’ll use the gradle build tool (gradle.org/) to manage the book’s
source code. Fortunately there are gradle plugins we can use for working with
Schema Registry, Avro, Protobuf, and JSON Schema. Specifically, we’ll use
the following plugins

github.com/ImFlog/schema-registry-plugin - For interacting with
Schema Registry i.e. testing schema compatibility, registering schemas,



and configuring schema compatibility
github.com/davidmc24/gradle-avro-plugin - Used for Java code
generation from Avro schema (.avsc) files.
github.com/google/protobuf-gradle-plugin - Used for Java code
generation from Protobuf schema (.proto) files
github.com/eirnym/js2p-gradle - Used for Java code generation for
schemas using the JSON Schema specification.

  Note

It’s important to note the distinction between schema files written in JSON
such as Avro schemas and those files using the JSON Schema format (json-
schema.org/). In the case of Avro files they are written as json, but follow the
Avro specification. With the JSON Schema files they follow the official
specification for JSON Schemas.

By using the gradle plugins for Avro, Protobuf and JSON Schema, you don’t
need to learn how to use the individual tools for each component, the plugins
handle all the work. We’ll also use a gradle plugin for handling most of the
interactions with Schema Registry.

Let’s get started by uploading a schema using a gradle command instead of a
REST API command in the console.

Uploading a schema file

The first thing we’ll do is use gradle to register a schema. We’ll use the same
Avro schema from the REST API commands section. Now to upload the
schema, make sure to change your current directory (CD) into the base
directory of project and run this gradle command:

./gradlew streams:registerSchemasTask

After running this command you should see something like BUILD
SUCCESSFUL in the console. Notice that all you needed to enter on the
command line is the name of the gradle task (from the schema-registry-
plugin) and the task registers all the schema inside the register { } block in



the streams/build.gradle file.

Now let’s take a look at the configuration of the Schema Registry plugin in
the streams/build.gradle file.

Listing 3.11. Configuration for Schema Registry plugin in streams/build.gradle

schemaRegistry {   #1

    url = 'http://localhost:8081' #2

register {

        subject('avro-avengers-value', #3

                'src/main/avro/avenger.avsc', #4

                'AVRO') #5

     //other entries left out for clarity

    }

  // other configurations left out for clarity

}

In the register block you provide the same information, just in a format of a
method call vs. a URL in a REST call. Under the covers the plugin code is
still using the Schema Registry REST API via a SchemaRegistryClient. As
side note, in the source code you’ll notice there are several entries in the
register block. You’ll use all of them when go through the examples in the
source code.

We’ll cover using more gradle Schema Registry tasks soon, but let’s move on
to generating code from a schema.

Generating code from schemas

As I said earlier, one of the best advantages of using the Avro and Protobuf
platforms is the code generation tools. Using the gradle plugin for these these
tools takes the convenience a bit further by abstracting away the details of
using the individual tools. To generate the objects represented by the schemas
all you need to do is run this gradle task:



Listing 3.12. Generating the model objects

./gradlew clean build

Running this gradle command generates Java code for all the types Avro,
Protobuf, and JSON Schema for the schemas in the project. Now we should
talk about where you place the schemas in the project. The default locations
for the Avro and Protobuf schemas are the src/main/avro and
src/main/proto directories, respectively. The location for the JSON Schema
schemas is the src/main/json directory, but you need to explicitly configure
this in the build.gradle file:

Listing 3.13. Configure the location of JSON Schema schema files

jsonSchema2Pojo {

  source = files("${project.projectDir}/src/main/json") #1

  targetDirectory = file("${project.buildDir}/generated-main-json-java")#2

  // other configurations left out for clarity

}

  Note

All examples here refer to the schemas found in the streams sub-directory
unless otherwise specified.

Here you can see the configuration of the input and output directories for the
js2p-gradle plugin. The Avro plugin, by default, places the generated files
in a sub-directory under the build directory named generated-main-avro-
java.

For Protobuf we configure the output directory to match the pattern of JSON
Schema and Avro in the Protobuf block of the build.gradle file like this:

Listing 3.14. Configure Protobuf output

protobuf {

    generatedFilesBaseDir = "${project.buildDir}

      /generated-main-proto-java" #1



    protoc {

        artifact = 'com.google.protobuf:protoc:3.15.3' #2

    }

}

I’d to take a quick second to discuss annotation two for a moment. To use
Protobuf you need to have the compiler protoc installed. By default the
plugin searches for a protoc executable. But we can use a pre-compiled
version of protoc from Maven Central, which means you don’t have to
explicitly install it. But if you prefer to use your local install, you can specify
the path inside the protoc block with path = path/to/protoc/compiler.

So we’ve wrapped up generating code from the schemas, now it’s time to run
an end-to-end example

End to end example

At this point we’re going to take everything you’ve learned so far and run a
simple end-to-end example. So far, you have registered the schemas and
generated the Java files you need from them. So your next steps are to:

Create some domain objects from the generated Java files
Produce your created objects to a Kafka topic
Consume the objects you just sent from the same Kafka topic

While parts two and three from the list above seem to have more to do with
clients than Schema Registry, I want to think about it from this perspective.
You’re creating instances of Java objects created from the schema files, so
pay attention to fields and notice how the objects conform to the structure of
the schema. Secondly, focus on the Schema Registry related configuration
items, serializer or deserializer and the URL for communicating with Schema
Registry.

  Note

In this example you will use a Kafka Producer and Kafka Consumer, but I
won’t cover any of the details of working with them. If you’re unfamiliar



with the producer and consumer clients that’s fine. I’ll go into detail about
producers and consumers in the next chapter. But for now just go through the
examples as is.

If you haven’t already registered the schema files and generated the Java
code, let’s do so now. I’ll put the steps here again and make sure you have
run docker-compose up -d to ensure your Kafka broker and Schema
Registry are running.

Listing 3.15. Register schemas and generate Java files

./gradlew streams:registerSchemasTask #1

./gradlew clean build #2

Now let’s focus on the Schema Registry specific configurations. Go to the
source code and take a look at the
bbejeck.chapter_3.producer.BaseProducer class. For now we only want
to look at the following two configurations, we’ll cover more configurations
for the producer in the next chapter:

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

    keySerializer); #1

producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

    "http://localhost:8081"); #2

The first configuration sets the Serializer the producer will use. Remember,
the KafkaProducer is decoupled from the type of the Serializer, it simply
calls the serialize method and gets back an array of bytes to send. So the
responsibility for providing the correct Serializer class is up to you.

In this case we’re going to work with objects generated from an Avro
schema, so you use the KafkaAvroSerializer. If you look at the
bbejeck.chapter_3.producer.avro.AvroProducer class (which extends the
BaseProducer) you see it pass the KafkaAvroSerializer.class to the parent
object constructor. The second configuration specifies the HTTP endpoint
that the Serializer uses for communicating with Schema Registry. These
configurations enable the interactions described in the illustration "Schema
registry ensures consistent data format between producers and consumers"



above.

Next, let’s take a quick look at creating an object:

Listing 3.16. Instantiating a an object from the generated code

var blackWidow = AvengerAvro.newBuilder()

                .setName("Black Widow")

                .setRealName("Natasha Romanova")

                .setMovies(List.of("Avengers", "Infinity Wars",

                  "End Game")).build();

OK, you’re thinking now, "this code creates an object, what’s the big deal?".
While it could be a minor point, but it’s more what you can’t do here that I’m
trying to drive home. You can only populate the expected fields with the
correct types, enforcing the contract of producing records in the expected
format. Of course you could update the schema and regenerate the code.

But by making changes, you have to register the new schema and the changes
have to match the current compatibility format for the subject-name. So now
can see now how Schema Registry enforces the "contract" between producers
and consumers. We’ll cover compatibility modes and the allowed changes in
an upcoming section.

Now let’s run the following gradle command to produce the objects to avro-
avengers topic.

Listing 3.17. Running the AvroProducer

./gradlew streams:runAvroProducer

After running this command you’ll see some output similar to this:

  DEBUG [main] bbejeck.chapter_3.producer.BaseProducer - Producing records

 [{"name": "Black Widow", "real_name": "Natasha Romanova", "movies":

["Avengers", "Infinity Wars", "End Game"]},

{"name": "Hulk", "real_name": "Dr. Bruce Banner", "movies":

["Avengers", "Ragnarok", "Infinity Wars"]},

{"name": "Thor", "real_name": "Thor", "movies":

["Dark Universe", "Ragnarok", "Avengers"]}]



After the application produces these few records it shuts itself down.

  Important

It’s important to make sure to run this command exactly as shown here
including the preceding : character. We have three different gradle modules
for our Schema Registry exercises. We need to make sure the command we
run are for the specific module. In this case the : executes the main module
only, otherwise it will run the producer for all modules and the example will
fail.

Now running this command doesn’t do anything exciting, but it demonstrate
the ease of serializing by using Schema Registry. The producer retrieves the
schema stores it locally and sends the records to Kafka in the correct
serialized format. All without you having to write any serialization or domain
model code. Congratulations you have sent serialize records to Kafka!

  Tip

It could be instructive to look a the log file generated from running this
command. It can be found in the logs/ directory of the provided source code.
The log4j configuration overwrites the log file with each run, so be sure to
inspect it before running the next step.

Now let’s run a consumer which will deserialize the records. But as we did
with the producer, we’re going to focus on the configuration required for
deserialization and working with Schema Registry:

Listing 3.18. Consumer configuration for using Avro

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

    KafkaAvroDeserializer.class); #1

consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,

    true); #2

consumerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

    "http://localhost:8081"); #3



You’ll notice that in the second annotation you are setting the
SPECIFIC_AVRO_READER_CONFIG to true. What does the
SPECIFIC_AVRO_READER_CONFIG setting do? Well to answer that question
let’s take a slight detour in our conversation to discuss working with Avro,
Protobuf, and JSON Schema serialized objects.

When deserializing one of the Avro, Protobuf, or JSON Schema objects there
is a concept of deserializing the specific object type or a non-specific
"container" object. For example, with the SPECIFIC_AVRO_READER_CONFIG set
to true, the deserializer inside the consumer, will return an object of type
AvroAvenger the *specific* object type.

However had you set the SPECIFIC_AVRO_READER_CONFIG to false, the
deserializer returns an object of type GenericRecord. The returned
GenericRecrod still follows the same schema, and has the same content, but
the object itself is devoid of any type awareness, it’s as the name implies
simply a generic container of fields. The following example should make
clear what I’m saying here:

Listing 3.19. Specific Avro records vs. GenericRecord

AvroAvenger avenger = // returned from consumer with

  //SPECIFIC_AVRO_READER_CONFIG=true

avenger.getName();

avenger.getRealName();   #1

avenger.getMovies();

GenericRecord genericRecord = // returned from consumer with

  //SPECIFIC_AVRO_READER_CONFIG=false

if (genericRecord.hasField("name")) {

   genericRecord.get("name");

}

if (genericRecord.hasField("real_name")) {  #2

    genericRecord.get("real_name");

}

if (GenericRecord.hasField("movies")) {

    genericRecord.get("movies");

}

From this simple code example, you can see the differences between the



specific returned type vs. the generic. With the AvroAvenger object in
annotation one, we can access the available properties directly, as the object
is "aware" of its structure and provides methods for accessing those fields.
But with the GenericRecord object you need to query if it contains a specific
field before attempting to access it.

  Note

The specific version of the Avro schema is not just a POJO (Plain Old Java
Object) but extends the SpecificRecordBase class.

Notice that with the GenericRecord you need to access the field exactly as its
specified in the schema, while the specific version uses the more familiar
camel case notation.

The difference between the two is that with the specific type you know the
structure, but with the generic type, since it could represent any arbitrary
type, you need to query for different fields to determine its structure. You
need to work with a GenericRecord much like you would with a HashMap.

However you’re not left to operate completely in the dark. You can get a list
of fields from a GenericRecord by calling
GenericRecord.getSchema().getFields(). Then you could iterate over the
list of Field objects and get the names by calling the Fields.name().
Additionally you could get the name of the schema with
GenericRecord.getSchema().getFullName(); and presumably at that point
you would know which fields the record contained.

Updating a field you’d follow a similar approach: .Updating or setting fields
on specific and generic records

avnenger.setRealName("updated name")

genericRecord.put("real_name", "updated name")

So from this small example you can see that the specific object gives you the
familiar setter functionality but the the generic version you need to explicitly
declare the field you are updating. Again you’ll notice the HashMap like
behavior updating or setting a field with the generic version.



Protobuf provides a similar functionality for working with specific or
arbitrary types. To work with an arbitrary type in Protobuf you’d us a
DynamicMessage. As with the Avro GenericRecord, the DynamicMessage
offers functions to discover the type and the fields. With JSON Schema the
specific types are just the object generated from the gradle plugin, there’s no
framework code associated with it like Avro or Protobuf. The generic version
is a type of JsonNode since the deserializer uses the jackson-databind
(github.com/FasterXML/jackson-databind) API for serialization and
deserialization.

  Note

The source code for this chapter contain examples of working with the
specific and generic types of Avro, Protobuf and JSON Schema.

So the question is when do you use the specific type vs. the generic? In the
case where you only have one type of record in a Kafka topic you’ll use the
specific version. On the other hand, if you have multiple event types in a
topic, you’ll want to use the generic version, as each consumed record could
be a different type. We’ll talk more about multiple event types in a single
topic later in this chapter, and again in the client and Kafka Streams chapters.

The final thing to remember is that to use the specific record type, you need
to set the kafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG
to true. The default for the SPECIFIC_AVRO_READER_CONFIG is false, so the
consumer returns the GenericRecord type if the configuration is not set.

Now with the sidebar about different record types completed, let’s resume
walking through your first end-to-end example using Schema Registry.
You’ve already produced some records using the schema you uploaded
previously. Now you just need to start a consumer to demonstrate
deserializing those records with the schema. Again, looking at the log files
should be instructive as you’ll see the embedded deserializer downloading
the schema for the first record only as it gets cached after the initial retrieval.

I should also note that the following example using
bbejeck.chapter_3.consumer.avro.AvroConsumer uses both the specific



class type and the GenericRecord type. As the example runs, the code prints
out the type of the consumed record.

  Note

There are similar examples for Protobuf and JSON Schema in the source
code.

So let’s run the consumer example now by executing the following command
from the root of the book source code project:

Listing 3.20. Running the AvroConsumer

./gradlew streams:runAvroConsumer

  Important

Again, the same caveat here about running the command with the preceding :
character, otherwise it will run the consumer for all modules and the example
will not work.

The AvroConsumer prints out the consumed records and shuts down by itself.
Congratulations, you’ve just serialized and deserialized records using Schema
Registry!

So far we’ve covered the types of serialization frameworks supported by
Schema Registry, how to write and add a schema file, and walked through a
basic example using a schema. During the portion of the chapter where you
uploaded a schema, I mentioned the term subject and how it defines the
scope of schema evolution. That’s what you’ll learn in the next section, using
the different subject name strategies.

3.2 Subject name strategies

Schema Registry uses the concept of a subject to control the scope of schema
evolution. Another way to think of the subject is a namespace for a particular



schema. In other words, as your business requirements evolve, you’ll need to
make changes to your schema files to make the appropriate changes to your
domain objects. For example, with our AvroAvenger domain object, you
want to remove the real (civilian) name of the hero and add a list of their
powers.

Schema Registry uses the subject to lookup the existing schema and compare
the changes with the new schema. It performs this check to make sure the
changes are compatible with the current compatibility mode set. We’ll talk
about compatibility modes in an upcoming section. The subject name strategy
determines the scope of where schema registry makes its compatibility
checks.

There are three types of subject name strategies, TopicNameStrategy,
RecordNameStrategy, and TopicRecordNameStrategy. You can probably
infer the scope of the name-spacing implied by the strategy names, but it’s
worth going over the details. Let’s dive in and discuss these different
strategies now.

  Note

By default all serializers will attempt to register a schema when serializing, if
it doesn’t find the corresponding id in its local cache. Auto registration is a
great feature, but in some cases you may need to turn it off with a producer
configuration setting of auto.register.schemas=false. One example of not
wanting auto registration is when you are using an Avro union schema with
references. We’ll cover this in more detail later in the chapter.

3.2.1 TopicNameStrategy

The TopicNameStrategy is the default subject in Schema Registry. The
subject name comes from the name of the topic. You saw the
TopicNameStrategy in action earlier in the chapter when you registered a
schema with the gradle plugin. To be more precise the subject name is
topic-name-key or topic-name-value as you can have different types for
the key and value requiring different schemas.



The TopicNameStrategy ensures there is only one data type on a topic, since
you can’t register a schema for a different type with the same topic name.
Having a single type per topic makes sense in a lot of cases. For example, if
you name your topics based on the event type they store. it follows that they
will contain only one record type.

Another advantage of the TopicNameStrategy is with the schema
enforcement limited to a single topic, you can have another topic using the
same record type, but using a different schema. Consider the situation where
two different departments use the same record type, but use different topic
names. With the TopicNameStrategy these departments can register
completely different schemas for the same record type, since the scope of the
schema is limited to a particular topic.

Figure 3.6. TopicNameStrategy enforces having the same type of domain object represented by
the registered schema for the value and or the key





Since the TopicNameStrategy is the default, you don’t need to specify any
additional configurations. When you register schemas you’ll use the format
of <topic>-value as the subject for value schemas and <topic>-key as the
subject for key schemas. In both cases you substitute the name of the topic
for the <topic> token.

But there could be cases where you have closely related events and you want
to produce those records into in one topic. In that case you’ll want to chose a
strategy that allows different types and schemas in a topic.

3.2.2 RecordNameStrategy

The RecordNameStrategy uses the fully qualified class name (of the Java
object representation of the schema) as the subject name. By using the record
name strategy you can now have multiple types of records in the same topic.
But the key point is that there is a logical relationship between these records,
it’s just the physical layout of them is different.

When would you choose the RecordNameStrategy? Imagine you have
different IoT (Internet of Things) sensors deployed. Some of sensors measure
different events so they’ll have different records. But you still want to have
them co-located on the same topic.

Figure 3.7. RecordNameStrategy enforces having the same schema for a domain object across
different topics





Since there can be different types, the compatibility checks occur between
schemas with the same record name. Additionally the compatibility check
extends to all topics using a subject with the same record name.

To use the RecordNameStrategy you use a fully qualified class name for the
subject when registering a schema for a given record type. For the
AvengerAvro object we’ve used in our examples, you would configure the
schema registration like this:

Listing 3.21. Schema Registry gradle plugin configuration for RecordNameStrategy

subject('bbejeck.chapter_3.avro.AvengerAvro','src/main/avro/avenger.avsc', 'AVRO')

Then you need to configure the producer and consumer with the appropriate
subject name strategy. For example:

Listing 3.22. Producer configuration for RecordNameStrategy

 Map<String, Object> producerConfig = new HashMap<>();

 producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,

  RecordNameStrategy.class);

 producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,

  RecordNameStrategy.class);

Listing 3.23. Consumer configuration for RecordNameStrategy

 Map<String, Object> consumerConfig = new HashMap<>();

 config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,

  RecordNameStrategy.class);

 config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,

  RecordNameStrategy.class);

  Note

If you are only using Avro for serializing/deserializing the values, you don’t
need to add the configuration for the key. Also the key and value subject
name strategies do not need to match, I’ve only presented them that way here.



For Protobuf use the KafkaProtobufSerializerConfig and
KafkaProtobufDeserializerConfig and for JSON schema use the
KafkaJsonSchemaSerializerConfig and
KafkaJsonSchemaDeserializerConfig

These configurations only effect how the serializer/deserializer interact with
Schema Registry for looking up schemas. Again the serialization is
decoupled from producing and consuming process.

One thing to consider is that by using only the record name, all topics must
use the same schema. If you want to use different records in a topic, but want
to only consider the schemas for that particular topic, then you’ll need to use
another strategy.

3.2.3 TopicRecordNameStrategy

As you can probably infer from the name this strategy allows for having
multiple record types within a topic as well. But the registered schemas for a
given record are only considered within the scope of the current topic. Let’s
take a look at the following illustration to get a better idea of what this means.

Figure 3.8. TopicRecordNameStrategy allows for having different schemas for the same domain
object across different topics





As you can see from the image above topic-A can have a different schema
for the record type Foo from topic-B. This strategy allows you to have
multiple logically related types on one topic, but it’s isolated from other
topics where you have the same type but are using different schemas.

Why would you use the TopicRecordNameStrategy? For example, consider
this situation:

You have one version of the CustomerPurchaseEvent event object in the
interactions topic, that groups all customer event types
(CustomerSearchEvent, CustomerLoginEvent etc) grouped together. But you
have an older topic purchases, that also contains CustomerPurchaseEvent
objects, but it’s for a legacy system so the schema is older and contains
different fields from the newer one. The TopicRecordNameStrategy allows
for having these two topics to contain the same type but with different
schema versions.

Similar to the RecordNameStrategy you’ll need to do the following steps to
configure the strategy:

Listing 3.24. Schema Registry gradle plugin configuration for TopicRecordNameStrategy

subject('avro-avengers-bbejeck.chapter_3.avro.AvengerAvro',

  'src/main/avro/avenger.avsc', 'AVRO')

Then you need to configure the producer and consumer with the appropriate
subject name strategy. For example:

Listing 3.25. Producer configuration for TopicRecordNameStrategy

 Map<String, Object> producerConfig = new HashMap<>();

 producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,

  TopicRecordNameStrategy.class);

 producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,

  TopicRecordNameStrategy.class);

Listing 3.26. Consumer configuration for TopicRecordNameStrategy

 Map<String, Object> consumerConfig = new HashMap<>();



 config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,

  TopicRecordNameStrategy.class);

 config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,

  TopicRecordNameStrategy.class);

  Note

The same caveat about registering the strategy for the key applies here as
well, you would only do so if you are using a schema for the key, it’s only
provided here for completeness. Also the key and value subject name
strategies don’t need to match

Why would you use the TopicRecordNameStrategy over either the
TopicNameStrategy or the RecordNameStrategy? If you wanted the ability to
have multiple event types in a topic, but you need the flexibility to have
different schema versions for a given type across your topics.

But when considering multiple types in a topic, both the
TopicRecordNameStrategy and the RecordNameStrategy don’t have the
ability to constrain a topic to fixed set of types. Using either of those subject
name strategies opens up the topic to have an unbounded number of different
types. We’ll cover how to improve on this situation when we cover schema
references in an upcoming section.

Here’s a quick summary for you to consider when thinking of the different
subject name strategies. Think of the subject name strategy as a function that
accepts the topic-name and record-schema as arguments and it returns a
subject-name. The TopicNameStrategy only uses the topic-name and ignores
the record-schema. RecordNameStrategy does the opposite; it ignores the
topic-name and only uses the record-schema. But the
TopicRecordNameStrategy uses both of them for the subject-name.

Table 3.1. Schema strategies summary table

Strategy Multiple types in a
topic

Different versions of
objects across topics



TopicNameStrategy Maybe Yes

RecordNameStrategy Yes No

TopicRecordNameStrategy Yes Yes

So far we’ve covered the subject naming strategies and how Schema Registry
uses subjects for name-spacing schemas. But there’s another dimension to
schema management, how to evolve changes within the schema itself. How
do you handle changes like the removal or addition of a field? Do you want
your clients to have forward or backward compatibility? In the next section
we’ll cover exactly how you handle schema compatibility.

3.3 Schema compatibility

When there are schema changes you need to consider the compatibility with
the existing schema and the producer and consumer clients. If you make a
change by removing a field how does this impact the producer serializing the
records or the consumer deserializing this new format?

To handle these compatibility concerns, Schema Registry provides four base
compatibility modes BACKWARD, FORWARD, FULL, and NONE. There are also three
additional compatibility modes BACKWARD_TRANSITIVE, FORWARD_TRANSITIVE,
and FULL_TRANSITIVE which extend on the base compatibility mode with the
same name. The base compatibility modes only guarantee that a new schema
is compatible with immediate previous version. The transitive compatibility
specifies that the new schema is compatible with *all* previous versions of a
given schema applying the compatibility mode.

You can specify a global compatibility level or a compatibility level per
subject.

What follows in this chapter is a description of the valid changes for a given



compatibility mode along with an illustration demonstrating the sequence of
changes you’d need to make to the producers the consumers. For a hands on
tutorial of making changes to a schema, see Appendix-B: Schema
Compatibility Workshop.

3.3.1 Backward compatibility

Backward compatibility is the default migration setting. With backward
compatibility you update the consumer code first to support the new schema.
The updated consumers can read records serialized with the new schema or
the immediate previous schema.

Figure 3.9. Backward compatibility updates consumers first to use the new schema then they can
handle records from producers using either the new schema or the previous one



As shown in this illustration the consumer, can work with both the previous
and the new schemas. The allowed changes with backwards compatibility are
deleting fields or adding optional fields. An field is considered optional when
the schema provides a default value. If the serialized bytes don’t contain the



optional field, then the deserializer uses the specified default value when
deserializing the bytes back into an object.

3.3.2 Forward compatibility

Forward compatibility is a mirror image of backward compatibility regarding
field changes. With forward compatibility you can add fields and delete
optional fields.

Figure 3.10. Forward compatibility updates producers first to use the new schema and consumers
can handle the records either the new schema or the previous one



By upgrading the producer code first, you’re making sure the new fields are
properly populated and only records in the new format are available.
Consumers you haven’t upgraded can still work with the new schema as it
will simply ignore the new fields and the deleted fields have default values.



At this point you’ve seen two compatibility types, backward and forward. As
the compatibility name implies, you must consider record changes in one
direction. In backward compatibility, you updated the consumers first as
records could arrive in either the new or old format. In forward compatibility,
you updated the producers first to ensure the records from that point in time
are only in the new format. The last compatibility strategy to explore is the
FULL compatibility mode.

3.3.3 Full compatibility

In full compatibility mode, you free to add or remove fields, but there is one
catch. *Any changes* you make must be to *optional* fields only. To recap
an optional field is one where you provide a default value in the schema
definition should the original deserialized record not provide that specific
field.

  Note

Both Avro and JSON Schema provide support for explicitly providing default
values, with Protocol Buffers version 3 (the version used in the book) every
field automatically has a default based in its type. For example number types
are 0, strings are "", collections are empty etc.

Figure 3.11. Full compatibility allows for producers to send with the previous or new schema and
consumers can handle the records either the new schema or the previous one



Since the fields involved in the updated schema are optional, these changes
are considered compatible for existing producer and consumer clients. This
means that the upgrade order in this case is up to you. Consumers will
continue to work with records produced with the new or old schema.



3.3.4 No compatibility

Specifying a compatibility of NONE instructs Schema Registry to do just that,
no compatibility checks. By not using any compatibility checks means that
someone can add new fields, remove existing fields, or change the type of a
field. Any and all changes are accepted.

Not providing any compatibility checks provides a great deal of freedom. But
the trade-off is you’re vulnerable to breaking changes that might go
undetected until the worse possible time; in production.

It could be that every time you update a schema, you upgrade all producers
and consumers at the same time. Another possibility is to create a new topic
for clients to use. Applications can use the new topic without having the
concerns of it containing records from the older, incompatible schema.

Now you’ve learned how you can migrate a schema to use a new version
with changes within the different schema compatibility modes and for review
here’s a quick summary table of the different compatibility types

Table 3.2. Schema Compatibility Mode Summary

Mode Changes Allowed Client Update
Order

Retro guaranteed
compatibility

Backward Delete fields, add
optional fields

Consumers,
Producers Prior version

Backward
Transitive

Delete fields, add
optional fields

Consumers,
Producers

All previous
versions

Forward Add fields, delete
optional fields

Producers,
Consumers Prior version



Forward
Transitive

Add fields, delete
optional fields

Producers,
Consumers

All previous
versions

Full
Delete optional
fields, add
optional fields

Doesn’t matter Prior version

Full Transitive
Delete optional
fields, add
optional fields

Doesn’t matter All previous
versions

But there’s more you can do with schemas. Much like working with objects
you can share common code to reduce duplication and make maintenance
easier, you can do the same with schema references

3.4 Schema references

A schema reference is just what is sounds like, referring to another schema
from inside the current schema. Reuse is a core principal in software
engineering as the ability to leverage something you’ve already built solves
two issues. First, you could potentially save time by not having to re-write
some exiting code. Second, when you need to update the original work
(which always happens) all the downstream components leveraging the
original get automatically updated as well.

When would you want to use a schema reference? Let’s consider you have an
application providing information on commercial business and universities.
To model the business you have a Company schema and for the universities
you have a College schema. Now a company has executives and the college
has professors. You want to represent both with a nested schema of a Person
domain object. The schemas would look something like this:

Listing 3.27. College schema



  "namespace": "bbejeck.chapter_3.avro",

  "type": "record",

  "name": "CollegeAvro",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "professors", "type":

    {"type": "array", "items": { #1

      "namespace": "bbejeck.chapter_3.avro",

      "name":"PersonAvro",       #2

      "fields": [

        {"name": "name", "type":"string"},

        {"name": "address", "type": "string"},

        {"name": "age", "type": "int"}

      ]

    }},

      "default": []

    }

  ]

}

So you can see here you have a nested record type in your college schema,
which is not uncommon. Now let’s look at the company schema

Listing 3.28. Company schema

{

  "namespace": "bbejeck.chapter_3.avro",

  "type": "record",

  "name": "CompanyAvro",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "executives", "type":

    {"type": "array", "items": {  #1

      "type":"record",

      "namespace": "bbejeck.chapter_3.avro",

      "name":"PersonAvro",        #2

      "fields": [

        {"name": "name", "type":"string"},

        {"name": "address", "type": "string"},

        {"name": "age", "type": "int"}

      ]

    }},

      "default": []

    }

  ]

}



Again you have a nested record for the type contained in the schema array.
It’s natural to model the executive or professor type as a person, as it allows
you to encapsulate all the details into an object. But as you can see here,
there’s duplication in your schemas. If you need to change the person schema
you need to update every file containing the nested person definition.
Additionally, as you start to add more definitions, the size and complexity of
the schemas can get unwieldy quickly due to all the nesting of types.

It would be better to put a reference to the type when defining the array. So
let’s do that next. We’ll put the nested PersonAvro record in its own schema
file, person.avsc.

I won’t show the file here, as nothing changes, we are putting the definition
you see here in a separate file. Now let’s take a look at how you’d update the
college.avsc and company.avsc schema files:

Listing 3.29. Updated College schema

{

  "namespace": "bbejeck.chapter_3.avro",

  "type": "record",

  "name": "CollegeAvro",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "professors", "type":

    {"type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"}, #1

      "default": []

    }

  ]

}

  Important

When using schema references, the referring schema you provide must be the
same type. For example you can’t provide a reference to an Avro schema or
JSON Schema inside Protocol Buffers schema, the reference must be another
Protocol Buffers schema.

Here you’ve cleaned things up by using a reference to the object created by



the person.avsc schema. Now let’s look at the updated company schema as
well

Listing 3.30. Updated Company schema

{

  "namespace": "bbejeck.chapter_3.avro",

  "type": "record",

  "name": "CompanyAvro",

  "fields": [

    {"name": "name", "type": "string"},

    {"name": "executives", "type":

      {

        "type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"}, #1

        "default": []

       }

  ]

}

Now both schemas refer to the same object created by the person schema file.
For completeness let’s take a look at how you implement a schema reference
in both JSON Schema and Protocol Buffers. First we’ll look at the JSON
Schema version:

Listing 3.31. Company schema reference in JSON Schema

{

  "$schema": "http://json-schema.org/draft-07/schema#",

  "title": "Exchange",

  "description": "A JSON schema of a Company using Person refs",

  "javaType": "bbejeck.chapter_3.json.CompanyJson",

  "type": "object",

  "properties": {

    "name": {

      "type": "string"

    },

    "executives": {

      "type": "array",

      "items": {

        "$ref": "person.json" #1

      }

    }

  }

}



The concept with references in JSON Schema is the same, but you provide an
explicit $ref element pointing to the referenced schema file. It’s assumed
that the referenced file is located in the same directory as the referring
schema.

Now let’s take a look at the equivalent reference with Protocol Buffers:

Listing 3.32. Company Schema reference in Protocol Buffers

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "person.proto";  #1

option java_outer_classname = "CompanyProto";

message Company {

  string name = 1;

  repeated Person executives = 2; #2

}

With Protocol Buffers you have a very minor extra step of providing an
import referring the the proto file containing the referenced object.

But now the question is how will the (de)serializers know how to serialize
and deserialize the object into the correct format? You’ve removed the
definition from inside the file, so you need to get a reference to the schema as
well. Fortunately, Schema Registry provides for using schema references.

What you need to do is register a schema for the person object first, then
when you register the schema for the college and company schemas, you
provide a reference to the already registered person schema.

Using the gradle schema-registry plugin makes this a simple task. Here’s how
you would configure it for using schema references:

Listing 3.33. Gradle plugin reference configuration

register {



    subject('person','src/main/avro/person.avsc', 'AVRO')       #1

    subject('college-value','src/main/avro/college.avsc', 'AVRO')

        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1) #2

    subject('company-value','src/main/avro/company.avsc', 'AVRO')

        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1) #3

    }

So you first registered the person.avsc file, but in this case the subject is
simply person because in this case it’s not associated directly with any one
topic. Then you registered both the college and company schemas using the
<topic name> - value pattern as the college and company schemas are tied
to topics with the same names and use the default subject name strategy
(TopicNameStrategy) . The addReference method takes three parameters:

1. A name for the reference. Since you’re using Avro it’s the fully
qualified name of the schema. For Protobuf it’s the name of the proto
file and for JSON schema it’s the URL in the schema.

2. The subject name for the registered schema.
3. The version number to use for the reference.

Now with the references in place, you register the schemas and your producer
and consumer client will be able to properly serialize and deserialize the
objects with the references.

There are examples in the source code for running a producer and consumer
with the schema references in action. Since you’ve already run the ./gradlew
streams:registerSchemasTask for the main module, you’ve already set up
your references. To see using schema references in action you can run the
following:

Listing 3.34. Tasks for schema references in action

./gradlew streams:runCompanyProducer

./gradlew streams:runCompanyConsumer

./gradlew streams:runCollegeProducer

./gradlew streams:runCollegeConsumer

3.5 Schema references and multiple events per topic



We’ve covered the different subject strategies RecordNameStrategy, and
TopicRecordNameStrategy and how they allow for producing records of
different types to a topic. But with the RecordNameStrategy any topic you
produce to must use the same schema version for the given type. This means
that if you want to make changes or evolve the schema, all topics must use
the new schema. Using the TopicRecordNameStrategy allows for multiple
events in a topic and it scopes the schema to a single topic, allowing you to
evolve the schema independent of other topics.

But with both approaches you can’t control the number of different types
produced to the topic. If someone wants to produce a record of a different
type that is not wanted, you don’t have any way to enforce this policy.

However there is a way to achieve producing multiple event types to a topic
and restrict the types of records produced to the topic by using schema
references. By using TopicNameStrategy in conjunction with schema
references, it allows all records in the topic to be constrained by a single
subject. In other words, schema references allow you to have multiple types,
but only those types that the schema refers to. This is best understood by
walking through an example scenario

Imagine you are an online retailer and you’ve developed system for precise
tracking of packages you ship to customers. You have a fleet of trucks and
planes that take packages anywhere in the country. Each time a package
handled along its route its scanned into your system generating one of three
possible events represented by these domain objects: - PlaneEvent,
TruckEvent, or a DeliveryEvent.

These are distinct events, but they are closely related. Also since the order of
these events is important, you want them produced to the same topic so you
have all related events together and in the proper sequence of their
occurrence. I’ll cover more about how combining related events in a single
topic helps with sequencing in chapter 4 when we cover clients. Now
assuming you’ve already created schemas for the PlaneEvent, TruckEvent,
and the DeliveryEvent you could create an schema like this to contain the
different event types:

Listing 3.35. Avro schema all_events.avsc with multiple events



[

  "bbejeck.chapter_3.avro.TruckEvent",    #1

  "bbejeck.chapter_3.avro.PlaneEvent",

  "bbejeck.chapter_3.avro.DeliveryEvent"

]

The all_events.avsc schema file is an Avro union, which is an array of the
possible event types. You use a union when a field, or, in this case a schema,
could be of more then one type.

Since you’re defining all the expected types in a single schema, your topic
can now contain multiple types, but it’s limited to only those listed in the
schema. When using schema references in this format with Avro, it’s critical
to always set auto.register.schemas=false and
use.latest.version=true in you Kafka producer configuration. Here’s the
reason why you need to use these configurations with the given settings.

When the Avro serializer goes to serialize the object, it won’t find the schema
for it, since it’s in the union schema. As a result it will register the schema of
the individual object, overwriting the union schema. So setting the auto
registration of schemas to false avoids the overwriting of the schema
problem. In addition, by specifying use.latest.version=true, the serializer
will retrieve the latest version of the schema (the union schema) and use that
for serialization. Otherwise it would look for the event type in the subject
name, and since it won’t find it, a failure will result.

  Tip

When using the oneOf field with references in Protocol Buffers, the
referenced schemas are automatically registered recursively, so can go ahead
and use the auto.register.schemas configuration set to true. You can also
do the same with JSON Schema oneOf fields.

Let’s now take a look at how you’d register the schema with references:

Listing 3.36. Register the all_events schema with references

subject('truck_event','src/main/avro/truck_event.avsc', 'AVRO')  #1



subject('plane_event','src/main/avro/plane_event.avsc', 'AVRO')

subject('delivery_event','src/main/avro/delivery_event.avsc', 'AVRO')

subject('inventory-events-value', 'src/main/avro/all_events.avsc','AVRO') #2

    .addReference("bbejeck.chapter_3.avro.TruckEvent", "truck_event", 1) #3

    .addReference("bbejeck.chapter_3.avro.PlaneEvent", "plane_event", 1)

    .addReference("bbejeck.chapter_3.avro.DeliveryEvent", "delivery_event", 1)

As you saw before in the schema references section, with Avro you need to
register the individual schemas before the schema containing the references.
After that you can register the main schema with the references to the
individual schemas.

When working with Protobuf there isn’t a union type but there is a oneOf
which is essentially the same thing. However with Protobuf you can’t have a
oneOf at the top-level, it must exist in an Protobuf message. For your
Protobuf example, consider that you want to track the following customer
interactions logins, searches, and purchases as separate events. But since they
are closely related and sequencing is important you want them in the same
topic. Here’s the Protobuf file containing the references:

Listing 3.37. Protobuf file with references

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "purchase_event.proto";  #1

import "login_event.proto";

import "search_event.proto";

option java_outer_classname = "EventsProto";

message Events {

  oneof type {  #2

    PurchaseEvent purchase_event = 1;

    LoginEvent login_event = 2;

    SearchEvent search_event = 3;

  }

  string key = 4;

}



You’ve seen a Protobuf schema earlier in the chapter so I won’t go over all
the parts here, but the key thing for this example is the oneOf field type
which could be a PurchaseEvent, LoginEvent, or a SearchEvent. When
when you register a Protobuf schema it has enough information present to
recursively register all of the referenced schemas, so it’s safe to set the
auto.register configuration to true.

You can structure your Avro references in a similar manner:

Listing 3.38. Avro schema with references using an outer class

{

  "type": "record",

  "namespace": "bbejeck.chapter_3.avro",

  "name": "TransportationEvent",  #1

  "fields" : [

    {"name": "event", "type"[   #2

      "bbejeck.chapter_3.avro.TruckEvent",  #3

      "bbejeck.chapter_3.avro.PlaneEvent",

      "bbejeck.chapter_3.avro.DeliveryEvent"

    ]}

  ]

}

So the main difference with this Avro schema vs. the previous Avro schema
with references is this one has outer class and the references are now a field
in the class. Also, when you provide an outer class with Avro references like
you have done here, you can now set the auto.register configuration to
true, although you still need to register the schemas for the referenced
objects ahead of time as Avro, unlike Protobuf, does not have enough
information to recursively register the referenced objects.

There are some additional considerations when it comes to using multiple
types with producers and consumers. I’m referring to the generics you use on
the Java clients and how you can determine to take the appropriate action on
an object depending on its concrete class name. I think these topics are better
suited to discuss when we cover clients, so we’ll cover that subject in the next
chapter.



At this point, you’ve learned about the different schema compatibility
strategies, how to work with schemas and using references. In all the
examples you’ve run you’ve been using the built in serializers and
deserializers provided by Schema Registry. In the next section we’ll cover the
configuration for the (de)serializers for producers and consumers. But we’ll
only cover the configurations related to the (de)serializers and not general
producer and consumer configuration, those we’ll cover in the next chapter.

3.6 Schema Registry (de)serializers

I’ve covered in the beginnings of the chapter,that when producing records to
Kafka you need to serialize the records for transport over the network and
storage in Kafka. Conversely, when consuming records you deserialize them
so you can work with objects.

You need to configure the producer and consumer with the classes required
for the serialization and deserialization process. Schema Registry provides a
serializer, deserializer, and a Serde (used in Kafka Streams) for all three
(Avro, Protobuf, JSON) supported types.

Providing the serialization tools is a strong argument for using Schema
Registry that I spoke about earlier in the chapter. Freeing developers from
having to write their own serialization code speeds up development and
increases standardization across an organization. Also using a standard set of
serialization tools reduces errors as reduces the chance that one team
implements their own serialization framework.

  Note

What’s a Serde? A Serde is a class containing both a serializer and
deserializer for a given type. You will use Serdes when working with Kafka
Streams because you don’t have access to the embedded producer and
consumer so it makes sense to provide a class containing both and Kafka
Streams uses the correct serializer and deserializer accordingly. You’ll see
Serdes in action when we start working with Kafka Streams in a later chapter.



In the following sections I’m going to discuss the configuration for using
Schema Registry aware serializers, deserializers. One important thing to
remember is you don’t configure the serializers directly. You set the
configuration for serializers when you configure either the KafkaProducer or
KafkaConsumer. If following sections aren’t entirely clear to you, that’s OK
because we’ll cover clients (producers and consumer) in the next chapter.

3.6.1 Avro

For Avro records there is the KafkaAvroSerializer and
KafkaAvroDeserializer classes for serializing and deserializing records.
When configuring a consumer, you’ll need to include an additional property,
KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG=true

indicating that you want the deserializer to create a SpecificRecord instance.
Otherwise the deserializer returns a GenericRecord.

Let’s take a look at snippets of how you add these properties to both the
producer and consumer. Note the following example only shows the
configurations required for the serialization. I’ve left out the other
configurations for clarity. We’ll cover configuration of producers and
consumers in chapter 4.

Listing 3.39. Required configuration for Avro

// producer properties

producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

  StringSerializer.class); #1

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

  KafkaAvroSerializer.class); #2

producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #3

//consumer properties these are set separately on the consumer

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

  StringDeserializer.class); #4

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

  KafkaAvroDeserializer.class); #5

props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,

  true); #6

props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #7



Next, let’s take a look at the configuration for working with Protobuf records

3.6.2 Protobuf

For working with Protobuf records there are the KafkaProtobufSerializer
and KafkaProtobufDeserializer classes.

When using Protobuf with schema registry, it’s probably a good idea to
specify both the java_outer_classname and set java_multiple_files to
true in the protobuf schema. If you end up using the RecordNameStrategy
with protobuf then you must use these properties so the deserializer can
determine the type when creating an instance from the serialized bytes.

If you remember from earlier in the chapter we discussed that when using
Schema Registry aware serializers, those serializers will attempt to register a
new schema. If your protobuf schema references other schemas via imports,
the referenced schemas are registered as well. Only protobuf provides this
capability, when using Avro or JSON referenced schemas are not loaded
automatically.

Again if you don’t want auto registration of schemas, you can disable it with
the following configuration auto.shema.registration = false.

Let’s look at a similar example of providing the relevant Schema Registry
configurations for working with protobuf records.

Listing 3.40. Required configuration for Protobuf

// producer properties

producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

  StringSerializer.class); #1

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

  KafkaProtobufSerializer.class); #2

producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #3

// consumer properties again set separately on the consumer

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

  StringDeserializer.class);#4

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,



  KafkaProtobufDeserializer.class);#5

props.put(KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,

  AvengerSimpleProtos.AvengerSimple.class);#6

props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #7

As with the Avro deserializer, you need to instruct it to create a specific
instance. But in this case you configure the actual class name instead of
setting a boolean flag indicating you want a specific class. If you leave out
the specific value type configuration the deserializer returns a type of
DynamicRecord. We covered working with the DynamicRecord in the
protobuf schema section.

The bbejeck.chapter_3.ProtobufProduceConsumeExample class in the
book source code demonstrates the producing and consuming a protobuf
record.

Now we’ll move on the final example of configuration of Schema Registry’s
supported types, JSON schemas.

3.6.3 JSON Schema

Schema Registry provides the KafkaJsonSchemaSerializer and
KafkaJsonSchemaDeserializer for working with JSON schema objects. The
configuration should feel familiar to both Avro and the Protobuf
configurations.

  Note

Schema Registry also provides KafkaJsonSerializer and
KafkaJsonDeserializer classes. While the names are very similar these
(de)serializers are meant for working with Java objects for conversion to and
from JSON, without a JSON Schema. While the names are close, make sure
you are using the serializer and deserializer with Schema in the name. We’ll
talks about the generic JSON serializers in the next section.

Listing 3.41. Required configuration for JSON Schema



// producer configuration

producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #1

producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

  StringSerializer.class); #2

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

  KafkaJsonSchemaSerializer.class); #3

// consumer configuration

props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  "http://localhost:8081"); #4

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

  StringDeserializer.class); #5

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

  KafkaJsonSchemaDeserializer.class); #6

props.put(KafkaJsonDeserializerConfig.JSON_VALUE_TYPE,

  SimpleAvengerJson.class); #7

Here you can see a similarity with the protobuf configuration in that you need
to specify the class the deserializer should construct from the serialized form
in annotation number 7 in this example. If you leave out the specify value
type then the deserializer returns a Map, the generic form of a JSON schema
deserialization. Just a quick note the same applies for keys. If your key is a
JSON schema object, then you’ll need to supply a
KafkaJsonDeserializerConfig.JSON_KEY_TYPE configuration for the
deserializer to create the exact class.

There is a simple producer and consumer example for working with JSON
schema objects in the
bbejeck.chapter_3.JsonSchemaProduceConsumeExample in the source code
for the book. As with the other basic producer and consumer examples, there
are sections demonstrating how to work with the specific and generic return
types. We outlined the structure of the JSON schema generic type in the
JSON schema section of this chapter.

Now we’ve covered the different serializer and deserializer for each type of
serialization supported by Schema Registry. Although using Schema Registry
is recommended, it’s not required. In the next section we’ll outline how you
can serialize and deserialize your Java objects without Schema Registry.

3.7 Serialization without Schema Registry



In the beginning of this chapter, I stated that your event objects, or more
specifically their schema representations, are a contract between the
producers and consumers of the Kafka event streaming platform. Schema
Registry provides a central repository for those schemas hence providing
enforcement of this schema contracts across your organization. Additionally,
the Schema Registry provided serializers and deserializers provide a
convenient way of working with data without having to write your own
serialization code.

Does this mean using Schema Registry is required? No not at all. In some
cases, you may not have access to Schema Registry or don’t want to use it.
Writing your own custom serializers and deserializers isn’t hard. Remember,
producers and consumers are decoupled from the (de)serializer
implementation, you only provide the classname as a configuration setting.
Although it’s good to keep in mind that by using Schema Registry you can
use the same schemas across Kafka Streams, Connect and ksqlDB.

So to create your own serializer and deserializer you create classes that
implement the org.apache.kafka.common.serialization.Serializer and
org.apache.kafka.common.serialization.Deserializer interfaces. With
the Serializer interface there is only one method you must implement
serialize. For the Deserializer it’s the deserialize method. Both
interfaces have additional default methods (configure, close) you can
override if you need to.

Here’s a section of a custom serializer using the jackson-databind
ObjectMapper:

Listing 3.42. Serialize method of a custom serializer

// details left out for clarity

@Override

public byte[] serialize(String topic, T data) {

    if (data == null) {

        return null;

    }

    try {

        return objectMapper.writeValueAsBytes(data); #1

    } catch (JsonProcessingException e) {

        throw new SerializationException(e);



    }

}

Here you call objectMapper.writeValueAsBytes() and it returns a
serialized representation of the passed in object.

Now let’s look at an example for the deserializing counterpart:

Listing 3.43. Deserialize method of a custom deserializer

// details left out for clarity

@Override

public T deserialize(String topic, byte[] data) {

    try {

        return objectMapper.readValue(data, objectClass); #1

    } catch (IOException e) {

        throw new SerializationException(e);

    }

}

The bbejeck.serializers package contains the serializers and deserializers
shown here and additional ones for Protobuf. You can use these
serializers/deserializers in any of the examples presented in this book but
remember that they don’t use Schema Registry. Or they can serve as
examples of how to implement your own (de)serializers.

In this chapter, we’ve covered how event objects or more specifically, their
schemas, represent contract between producers and consumers. We discussed
how Schema Registry stores these schemas and enforces this implied contract
across the Kafka platform. Finally we covered the supported serialization
formats of Avro, Protobuf and JSON. In the next chapter, you’ll move up
even further in the event streaming platform to learn about Kafka clients, the
KafkaProducer and KafkaConsumer. If you think of Kafka as your central
nervous system for data, then the clients are the the sensory inputs and
outputs for it.

3.8 Summary

Schemas represent a contract between producers and consumers. Even if
you don’t use explicit schemas, you have an implied one with your



domain objects, so developing a way to enforce this contract between
producers and consumers is critical.
Schema Registry stores all your schemas enforcing data governance and
it provides versioning and three different schema compatibility
strategies - backward, forward and full. The compatibility strategies
provide assurance that the new schema will work with it’s immediate
predecessor, but not necessarily older ones. For full compatibility across
all versions you need to use backward-transitive, forward-transitive, and
full-transitive. Schema Registry also provides a convenient REST API
for uploading, view and testing schema compatibility.
Schema Registry supports three type of serialization formats Avro,
Protocol Buffers, and JSON Schema. It also provides integrated
serializers and deserializers you can plug into your KafkaProducer and
KafkaConsumer instances for seamless support for all three supported
types. The provided (de)serializers cache schemas locally and only fetch
them from Schema Registry when it can’t locate a schema in the cache.
Using code generation with tools such as Avro and Protobuf or open
source plugins supporting JSON Schema help speed up development
and eliminate human error. Plugins that integrate with Gradle and
Maven also provide the ability to test and upload schemas in the
developers normal build cycle.



4 Kafka Clients
This chapter covers

Producing records with the KafkaProducer
Understanding message delivery semantics
Consuming records with the KafkaConsumer
Learning about Kafka’s exactly-once streaming
Using the Admin API for programmatic topic management
Handling multiple event types in a single topic

This chapter is where the "rubber hits the road" and we take what you’ve
learned over the previous two chapters and apply it here to start building
event streaming applications. We’ll start out by working with the producer
and consumer clients individually to gain a deep understanding how each one
works.

In their simplest form, clients operate like this: producers send records (in a
produce request) to a broker and the broker stores them in a topic and
consumers send a fetch request and the broker retrieves records from the
topic to fulfill that request. When we talk about the Kafka event streaming
platform, it’s common to mention both producers and consumers. After all,
it’s a safe assumption that you are producing data for someone else to
consume. But it’s very important to understand that the producers and
consumers are unaware of each other, there’s no synchronization between
these two clients.

Figure 4.1. Producers send batches of records to Kafka in a produce request





The KafkaProducer has just one task, sending records to the broker. The
records themselves contain all the information the broker needs to store them.

Figure 4.2. Consumers send fetch requests to consume records from a topic, the broker retrieves
those records to fulfill the request





The KafkaConsumer on the other hand only reads or consumes records from a
topic. Also, as we mentioned in the chapter covering the Kafka broker, the
broker handles the storage of the records. The act of consuming records has
no impact on how long the broker retains them.

In this chapter you’ll take a KafkaProducer and dive into the essential
configurations and walk through examples of producing records to the Kafka
broker. Learning how the KafkaProducer works is important because that’s
the crucial starting point for building event streaming applications; getting the
records into Kafka.

Next you’ll move on to learning how to use the KafkaConsumer. Again we’ll
cover the vital configuration settings and from working with some examples,
you’ll see how an event streaming application works by continually
consuming records from the Kafka broker. You’ve started your event
streaming journey by getting your data into Kafka, but it’s when you start
consuming the data that you start building useful applications.

Then we’ll go into working with the Admin interface. As the name implies,
it’s a client that allows you to perform administrative functions
programmatically.

From there you’ll get into more advanced subject matter such as the
idempotent producer configuration which guarantees you per partition,
exactly-once message delivery and the Kafka transnational API for exactly
once delivery across multiple partitions.

When you’re done with this chapter you’ll know how to build event
streaming applications using the KafkaProducer and KafkaConsumer clients.
Additionally, you’ll have a good understanding how they work so you can
recognize when you have a good use-case for including them in your
application. You should also come away with a good sense of how to
configure the clients to make sure your applications are robust and can handle
situations when things don’t go as expected.

So with this overview in mind, we are going to embark on a guided tour of
how the clients do their jobs. First we’ll discuss the producer, then we’ll



cover the consumer. Along the way we’ll take some time going into deeper
details, then we’ll come back up and continue along with the tour.

4.1 Producing records with the KafkaProducer

You’ve seen the KafkaProducer some in chapter three when we covered
Schema Registry, but I didn’t go into the details of how the producer works.
Let’s do that now.

Say you work on the data ingest team for a medium sized wholesale
company. You get transaction data delivered via a point of sale service and
several different departments within the company want access to the data for
things such as reporting, inventory control, detecting trends etc.

You’ve been tasked with providing a reliable and fast way of making that
information available to anyone within the company that wants access. The
company, Vandelay Industries, uses Kafka to handle all of its event streaming
needs and you realize this is your opportunity to get involved. The sales data
contains the following fields:

1. Product name
2. Per-unit price
3. Quantity of the order
4. The timestamp of the order
5. Customer name

At this point in your data pipeline, you don’t need to do anything with the
sales data other than to send it into a Kafka topic, which makes it available
for anyone in the company to consume

Figure 4.3. Sending the data into a Kafka Topic





To make sure everyone is on the same page with the structure of the data,
you’ve modeled the records with a schema and published it to Schema
Registry. All that’s left is for you to do write the KafkaProducer code to take
the sales records and send them into Kafka. Here’s what your code looks like

Listing 4.1. A KafkaProducer the source code can be found at
bbejeck.chapter_4.sales.SalesProducerClient

// There are some details left out for clarity here in the text

try (

Producer<String, ProductTransaction> producer = new KafkaProducer<>(

  producerConfigs)) { #1

   while(keepProducing) {

    Collection<ProductTransaction> purchases = salesDataSource.fetch(); 

     purchases.forEach(purchase -> {

        ProducerRecord<String, ProductTransaction> producerRecord =

             new ProducerRecord<>(topicName, purchase.getCustomerName(),

              purchase); #3

        producer.send(producerRecord,

          (RecordMetadata metadata, Exception exception) -> {    #4

              if (exception != null) {   #5

                  LOG.error("Error producing records ", exception);

            } else {

              LOG.info("Produced record at offset {} with timestamp {}", 

                          metadata.offset(), metadata.timestamp());

              }

          });

      });

Notice at annotation one the KafkaProducer takes a Map of configuration
items (In a section following this example we’ll dicusss some of the more
important KafkaProducer configurations). At annotation number 2, we’re
going to use a data generator to simulate the delivery of sales records. You
take the list of ProductTransaction objects and use the Java stream API to
map each object in the list into a ProducerRecord object.

Figure 4.4. The Producer batches records and sends them to the broker when the buffer is full or
it’s time to send them



For each ProducerRecord created you pass it as a parameter to the
KafkaProducer.send() method. However, the producer does not
immediately send the record to the broker, instead it attempts to batch up
records. By using batches the producer makes fewer requests which helps
with performance on both the broker and the producer client. The
KafkaProducer.send() call is asynchronous to allow for continually adding
records to a batch. The producer has a separate a thread (the I/O thread) that
can send records when the batch is full or when it decides it’s time so



transmit the batch.

There are two signatures for the send method. The version you are using in
the code here accepts a ProducerRecord and Callback object as parameters.
But since the Callback interface only contains one method, also known as
functional interface, we can use a lambda expression instead of a concrete
implementation. The producer I/O thread executes the Callback when the
broker acknowledges the record as persisted.

The Callback.onCompletion method, again represented here as a lambda,
accepts two parameters RecordMetadata and Exception. The
RecordMetadata object contains metadata of the record the broker has
acknowledged. Referring back to our discussion on the acks configuration,
the RecordMetadata.offset field is -1 if you have acks=0. The offset is -1
because the producer doesn’t wait for acknowledgment from the broker, so it
can’t report the offset assigned to the record. The exception parameter is non-
null if an error occurred.

Since the producer I/O thread executes the callback, it’s best if you don’t do
any heavy processing as that would hold up sending of records. The other
overloaded KafkaProducer.send() method only accepts a ProducerRecord
parameter and returns a Future<RecordMetadata>. Calling the Future.get()
method blocks until the broker acknowledges the record (request
completion). Note that if an error occurs during the send then executing the
get method throws an exception.

Generally speaking it’s better to use the send method with the Callback
parameter as it’s a bit cleaner to have the I/O thread handle the results of the
send asynchronously vs. having to keep track of every Future resulting from
the send calls.

At this point we’ve covered the fundamental behavior for a KafkaProducer,
but before we move onto consuming records, we should take a moment to
discuss other important subjects involving the producer: configurations,
delivery semantics, partition assignment, and timestamps.

4.1.1 Producer configurations



bootstrap.servers - One or more host:port configurations specifying a
broker for the producer to connect to. Here we have a single value
because this code runs against a single broker in development. In a
production setting, you could list every broker in your cluster in a
comma separated list.
key.serializer - The serializer for converting the key into bytes. In
this example, the key is a String so we can use the StringSerializer
class provided with the Kafka clients. The
org.apache.kafka.common.serialization package contains serializers
for String, Integer, Double etc. You could also use Avro, Protobuf, or
JSON Schema for the key and use the appropriate serializer.
value.serializer - The serializer for the value. Here we’re using
object generated from an Avro schema. Since we’re using Schema
Registry, we’ll use the KafkaAvroSerializer we saw from chapter 3.
But the value could also be a String, Integer etc and you would use one
of the serializers from the org.apache.kafka.common.serialization
package.

acks - The number of acknowledgments required to consider the
produce request successful. The valid values are "0", "1", "all" the acks
configuration is one of the most important to understand as it has a
direct impact on data durability. Let’s go through the different settings
here.

Zero (acks=0) Using a value of 0 means the producer will not wait
for any acknowledgment from the broker about persisting the
records. The producer considers the send successfully immediately
after transmitting it to the broker. You could think using acks=0 as
"fire and forget". Using this setting has the highest throughput, but
has the lowest guarantee on data durability.
One (acks=1) A setting of one means the producer waits for
notification from the lead broker for the topic-partition that it
successfully persisted the record to its log. But the producer doesn’t
wait for acknowledgment from the leader that any of the followers
persisted the record. While you have a little more assurance on the
durability of the record in this case, should the lead broker fail
before the followers replicate the record, it will be lost.



All (acks=all) This setting gives the highest guarantee of data
durability. In this case, the producer waits for acknowledgment
from the lead broker that it successfully persisted the record to its
own log and the following in-sync brokers were able to persist the
record as well. This setting has the lowest throughput, but the
highest durability guarantees. When using the acks=all setting it’s
advised to set the min.insync.replicas configuration for your
topics to a value higher than the default of 1. For example with a
replication factor of 3, setting min.insyc.replicas=2 means the
producer will raise an exception if there are not enough replicas
available for persisting a record. We’ll go into more detail on this
scenario later in this chapter.

delivery.timeout.ms - This is an upper bound on the amount of time
you want to wait for a response after calling KafkaProducer.send().
Since Kafka is a distributed system, failures delivering records to the
broker are going to occur. But in many cases these errors are temporary
and hence re-tryable. For example the producer may encounter trouble
connecting due to a network partition. But network connectivity can be a
temporary issue, so the producer will re-try sending the batch and in a
lot cases the re-sending of records succeeds. But after a certain point,
you’ll want the producer to stop trying and throw an error as prolonged
connectivity problems mean there’s an issue that needs attention. Note
that if the producer encounters what’s considered a fatal error, then the
producer will throw an exception before this timeout expires.
retries - When the producer encounters an non-fatal error, it will retry
sending the record batch. The producer will continue to retry until the
delivery.timeout.ms timeout expires. The default value for retries is
INTEGER.MAX_VALUE. Generally you should leave the retried
configuration at the default value. If you want to limit the amount of
retries a producer makes, you should reduce the amount of time for the
delivery.timeout.ms configuration. With errors and retries it’s
possible that records could arrive out of order to the same partition.
Consider the producer sends a batch of records but there is an error
forcing a retry. But in the intervening time the producer sends a second
batch that did not encounter any errors. The first batch succeeds in the
subsequent retry, but now it’s appended to the topic after the second
batch. To avoid this issue you can set the configuration



max.in.flight.requests.per.connection=1. Another approach to
avoid the possibility of out of order batches is to use the idempotent
producer which we’ll discuss in the section called “Idempotent
producer” in this chapter.

Now that you have learned about the concept of retries and record
acknowledgments, let’s look at message delivery semantics now.

4.1.2 Kafka delivery semantics

Kafka provides three different delivery semantic types: at least once, at most
once, and exactly once. Let’s discuss each of them here.

At least once - With "at least once" a records are never lost, but may be
delivered more than once. From the producer’s perspective this can
happen when a producer sends a batch of records to the broker. The
broker appends the records to the topic-partition, but the producer does
not receive the acknowledgment in time. In this case the producer re-
sends the batch of records. From the consumer point of view, you have
processed incoming records, but before the consumer can commit, an
error occurs. Your application reprocesses data from the last committed
offset which includes records already processed, so there are duplicates
as a result. Records are never lost, but may be delivered more than once.
Kafka provides at least once delivery by default.
At most once - records are successfully delivered, but may be lost in the
event of an error. From the producer standpoint enabling acks=0 would
be an example of at most once semantics. Since the producer does not
wait for any acknowledgment as soon as it sends the records it has no
notion if the broker either received them or appended them to the topic.
From the consumer perspective, it commits the offsets before
confirming a write so in the event of an error, it will not start processing
from the missed records as the consumer already committed the offsets.
To achieve at "at most once" producers set acks=0 and consumers
commit offsets before doing any processing.
Exactly once - With "exactly once" semantics records are neither
delivered more than once or lost. Kafka uses transactions to achieve
exactly once semantics. If a transaction is aborted, the consumers



internal position gets reset to the offset prior to the start of the
transaction and the stored offsets aren’t visible to any consumer
configured with read_committed.

Both of these concepts are critical elements of Kafka’s design. Partitions
determine the level of parallelism and allow Kafka to distribute the load of a
topic’s records to multiple brokers in a cluster. The broker uses timestamps to
determine which log segments it will delete. In Kafka Streams, they drive
progress of records through a topology (we’ll come back to timestamps in the
Kafka Streams chapter).

4.1.3 Partition assignment

When it comes to assigning a partition to a record, there are three
possibilities:

1. If you provide a valid partition number, then it’s used when sending the
record

2. If you don’t give the partition number, but there is a key, then the
producer sets the partition number by taking the hash of the key modulo
the number of partitions.

3. Without providing a partition number or key, the KafkaProducer sets
the partition by alternating the partition numbers for the topic. The
approach to assigning partitions without keys has changed some as of
the 2.4 release of Kafka and we’ll discuss that change now.

Prior to Kafka 2.4, the default partitioner assigned partitions on a round-robin
basis. That meant the producer assigned a partition to a record, it would
increment the partition number for the next record. Following this round-
robin approach, results in sending multiple, smaller batches to the broker.
The following illustration will help clarify what is going on:

Figure 4.5. Round robin partition assignment



This approach also led to more load on the broker due to a higher number of
requests.

But now when you don’t provide a key or partition for the record, the
partitioner assigns a partition for the record per batch. This means when the
producer flushes its buffer and sends records to the broker, the batch is for
single partition resulting in a single request. Let’s take a look at an illustration



to visualize how this works:

Figure 4.6. Sticky partition assignment





After sending the batch, the partitioner selects a partition at random and
assigns it to the next batch. In time, there’s still an even distribution of
records across all partitions, but it’s done one batch at a time.

Sometimes the provided partitioners may not suit your requirements and
you’ll need finer grained control over partition assignment. For those cases
you can write your own custom partitioner.

4.1.4 Writing a custom partitioner

Let’s revisit the producer application from the the section called “Producing
records with the KafkaProducer” section above. The key is the name of the
customer, but you have some orders that don’t follow the typical process and
end up with a customer name of "CUSTOM" and you’d prefer to restrict
those orders to a single partition 0, and have all other orders on partition 1 or
higher.

So in this case, you’ll need to write a custom partitioner that can look at the
key and return the appropriate partition number.

The following example custom partitioner does just that. The
CustomOrderPartitioner (from
src/main/java/bbejeck/chapter_4/sales/CustomOrderPartitioner.java)
examines the key to determine which partition to use.

Listing 4.2. CustomOrderPartitioner custom partitioner

public class CustomOrderPartitioner implements Partitioner {

// Some details omitted for clarity

@Override

public int partition(String topic,

                     Object key,

                     byte[] keyBytes,

                     Object value,

                     byte[] valueBytes,

                     Cluster cluster) {



    Objects.requireNonNull(key, "Key can't be null");

    int numPartitions = cluster.partitionCountForTopic(topic); #1

    String strKey = (String) key;

    int partition;

    if (strKey.equals("CUSTOM")) {

        partition = 0;  #2

    } else {

        byte[] bytes = strKey.getBytes(StandardCharsets.UTF_8);

        partition = Utils.toPositive(Utils.murmur2(bytes)) %

                                       (numPartitions - 1) + 1; #3

    }

    return partition;

  }

}

To create your own partitioner you implement the Partitioner interface
which has 3 methods, partition, configure, and close. I’m only showing
the partition method here as the other two are no-ops in this particular case.
The logic is straight forward; if the customer name equates to "CUSTOM",
return zero for the partition. Otherwise you determine the partition as usual,
but with a small twist. First we subtract one from the number of candidate
partitions since the 0 partition is reserved. Then we shift the partiton number
by 1 which ensures we always return 1 or greater for the non-custom order
case.

  Note

This example does not represent a typical use case and is presented only for
the purpose of demonstrating how to you can provide a custom partitioner. In
most cases it’s best to go with one of the provided ones.

You’ve just seen how to construct a custom partitioner and next we’ll wire it
up with our producer.

4.1.5 Specifying a custom partitioner

Now that you’ve written a custom partitioner, you need to tell the producer
you want to use it instead of the default partitioner. You specify a different
partitioner when configuring the Kafka producer:



producerConfigs.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,

 CustomOrderPartitioner.class);

The bbejeck.chapter_4.sales.SalesProducerClient is configured to use the
CustomOrderPartitioner, but you can simply comment out the line if you
don’t want to use it. You should note that since the partitioner config is a
producer setting, it must be done on each one you want to use the custom
partitioner.

4.1.6 Timestamps

The ProducerRecord object contains a timestamp field of type Long. If you
don’t provide a timestamp, the KafkaProducer adds one to the record, which
is simply the current time of the system the producer is running on.
Timestamps are an important concept in Kafka. The broker uses them to
determine when to delete records, by taking the oldest timestamp in a
segment and comparing it to the current time. If the difference exceeds the
configured retention time, the broker removes the segment. Kafka Streams
and ksqlDB also rely heavily on timestamps, but I’ll defer those discussions
until we get to their respective chapters.

There are two possible timestamps that Kafka may use depending on the
configuration of the topic.

In Kafka topics have a configuration, message.timestamp.type which can
either be CreateTime or LogAppendTime. A configuration of CreatTime
means the broker stores the record with the timestamp provided by the
producer. If you configure your topic with LogAppendTime, then the broker
overwrites the timestamp in the record with its current wall-clock (i.e,
system) time when the broker appends the record in the topic. In practice, the
difference between these timestamps should be close.

Another consideration is that you can embed the timestamp of the event in
payload of the record value when you are creating it.

This wraps up our discussion on the producer related issues. Next we’ll move
on to the mirror image of producing records to Kafka, consuming records.



4.2 Consuming records with the KafkaConsumer

So you’re back on the job at Vandelay Industries and you now have a new
task. Your producer application is up an running happily pushing sales
records into a topic. But now you’re asked to develop a KafkaConsumer
application to serve as a model for consuming records from a Kafka topic.

Figure 4.7. Consumers send fetch requests to consume records from a topic, the broker retrieves
those records to fulfill the request





The KafkaConsumer sends a fetch request to the broker to retrieve records
from topics it’s subscribed to. The consumer makes what known as a poll
call to get the records. But each time the consumer polls, it doesn’t
necessarily result in the broker fetching records. Instead it could be retrieving
records cached by a previous call.

  Note

There are producer and consumer clients available in other programming
languages, but in this book we’ll focus on the clients available in the Apache
Kafka distribution, which are written in Java. To see a list of clients available
in other languages checkout take a look at this resource
docs.confluent.io/platform/current/clients/index.html#ak-clients

Let’s get started by looking at the code for creating a KafkaConsumer
instance:

Listing 4.3. KafkaConsumer code found in bbejeck.chapter_4.sales.SalesConsumerClient

// Details left out for clarity

 try (

  final Consumer<String, ProductTransaction> consumer = new KafkaConsumer<>(

    consumerConfigs)) { #1

    consumer.subscribe(topicNames);   #2

    while (keepConsuming) {

        ConsumerRecords<String, ProductTransaction> consumerRecords =

          consumer.poll(Duration.ofSeconds(5)); #3

        consumerRecords.forEach(record -> {     #4

            ProductTransaction pt = record.value();

            LOG.info("Sale for {} with product {} for a total sale of {}",

                    record.key(),

                    pt.getProductName(),

                    pt.getQuantity() * pt.getPrice());

        });

    }

}

In this code example, you’re creating a KafkaConsumer, again using the try-
with-resources statement. After subscribing to a topic or topics, you begin



processing records returned by the KafkaConsumer.poll method. When the
poll call returns records, you start doing some processing with them. In this
example case we’re simply logging out the details of the sales transactions.

  Tip

Whenever you create either a KafkaProducer or KafkaConsumer you need to
close them when your done to make sure you clean up all of the threads and
socket connections. The try-with-resources
(docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html)
in Java ensures that resources created in the try portion are closed at the end
of the statement. It’s a good practice to always use the try-with-resources
statement as it’s easy to overlook adding a close call on either a producer or
a consumer.

You’ll notice that just like with the producer, you create a Map of
configurations and pass them as a parameter to the constructor. Here I’m
going to show you some of the more prominent ones.

bootstrap.servers - One or more host:port configurations specifying a
broker for the consumer to connect to. Here we have a single value, but
this could be a comma separated list.
max.poll.interval.ms - The maximum amount of time a consumer can
take between calls to KafkaConsumer.poll() otherwise the consumer
group coordinator considers the individual consumer non-active and
triggers a rebalance. We’ll talk more about the consumer group
coordinator and relabances in this section.
group.id - An arbitrary string value used to associate individual
consumers as part of the same consumer group. Kafka uses the concept
of a consumer group to logically map multiple consumers as one
consumer.
enable.auto.commit - A boolean flag that sets whether the consumer
will automatically commit offsets. If you set this to false, your
application code must manually commit the offsets of records you
considered successfully processed.
auto.commit.interval.ms - The time interval at which offsets are
automatically committed.



auto.offset.reset - When a consumer starts it will resume consuming
from the last committed offset. If offsets aren’t available for the
consumer then this configuration specifies where to start consuming
records, either the earliest available offset or the latest which means the
offset of the next record that arrives after the consumer started.
key.deserializer.class - The classname of the deserializer the
consumer uses to convert record key bytes into the expected object type
for the key.
value.deserializer.class - The classname of the deserializer the
consumer uses to convert record value bytes into the expected object
type for the value. Here we’re using the provided
KafkaAvroDeserializer for the value which requires the
schema.registry.url configuration which we have in our
configuration.

The code we use in our first consumer application is fairly simple, but that’s
not the main point. Your business logic, what you do when you consume the
records is always going to be different on a case-by-case basis.

It’s more important to grasp how the KafkaConsumer works and the
implications of the different configurations. By having this understanding
you’ll be in a better position to know how to best write the code for
performing the desired operations on the consumed records. So just as we did
in the producer example, we’re going to take a detour from our narrative and
go a little deeper on the implications of these different consumer
configurations.

4.2.1 The poll interval

Let’s first discuss the roll of max.poll.interval.ms. It will be helpful to
look at an illustration of what the poll interval configuration in action to get a
full understanding:

Figure 4.8. The max.poll.interval.ms configuration specifies how long a consumer may take
between calls to KafkaConsumer.poll() before the consumer is considered inactive and removed
from the consumer group





In the illustration here, the consumer processing loop starts with a call to
KafkaConsumer.poll(Duration.ofSeconds(5)), the time passed to the
poll(Duration) call is the maximum time the consumer waits for new
records, in this case five seconds. When the poll(Duration) call returns, if
there are any records present, the for loop over the ConsumerRecords
executes your code over each one. Had there been no records returned, the
outer while loop simply goes back to the top for another poll(Duration)
call.

Going through this illustration, iterating over all the records and execution for
each record must complete before the max.poll.interval.ms time elapses.
By default this value is five minutes, so if your processing of returned records
takes longer, then that individual consumer is considered dead and the group
coordinator removes the consumer from the group and triggers a rebalance. I
know that I’ve mentioned a few new terms in group coordinator and
rebalancing, we’ll cover them in the next section when we cover the
group.id configuration.

If you find that your processing takes longer than the max.poll.interval.ms
there are a couple of things you can do. The first approach would be to
validate what you’re doing when processing the records and look for ways to
speed up the processing. If you find there’s no changes to make to your code,
the next step could be to to reduce the maximum number of records the
consumer retrieves from a poll call. You can do this by setting the
max.poll.records configuration to a setting less than the default of 500. I
don’t have any recommendations, you’ll have to experiment some to come up
with a good number.

4.2.2 Group id

The group.id configuration takes into a deeper conversation about consumer
groups in Kafka. Kafka consumers use a group.id configuration which
Kafka uses to map all consumers with the same group.id into the same
consumer group. A consumer group is a way to logically treat all members of
the group as one consumer. Here’s an illustration to demonstrating how
group membership works:



Figure 4.9. Consumer groups allow for assigning topic-partitions across multiple consumers





So going off the image above, there is one topic with six partitions. There are
three consumers in the group, so each consumer has an assignment of two
partitions. Kafka guarantees that only a single consumer maintains an
assignment for a given topic-partition. To have more than one consumer
assigned to a single topic-partition would lead to undefined behavior.

Life with distributed systems means that failures aren’t to be avoided, but
embraced with sound practices to deal with them as they occur. So what
happens with our scenario here if one of the consumers in the group fails
whether from an exception or missing a required timeout like we described
above with the max.poll.interval.ms timeout? The answer is the Kafka
rebalance protocol, depicted below:

Figure 4.10. The Kafka rebalance protocol re-assigns topic-partitions from failed consumers to
still alive ones





What we see here is that consumer-two fails and can longer function. So
rebalancing takes the topic-partitions owned by consumer-two and reassigns
one topic-partition each to other active consumers in the group. Should
consumer-two become active again (or another consumer join the group),
then another rebalance occurs and reassigns topic-partitions from the active
members and each group member will be responsible for two topic-partitions
each again.

  Note

The number of active consumers that you can have is bounded by the number
of partitions. From our example here, you can start up to six consumers in the
group, but any more beyond six will be idle. Also note that different groups
don’t affect each other, each one is treated independently.

So far, I’ve discussed how not making a poll() call within the specified
timeout will cause a consumer to drop out of the group triggering a rebalance
and assigning its topic-partition assignments to other consumers in the group.
But if you recall the default setting for max.poll.interval.ms is five
minutes. Does this mean it takes up to five minutes for potentially dead
consumer to get removed from the group and its topic-partitions reassigned?
The answer is no and let’s look at the poll interval illustration again but we’ll
update it to reflect session timeouts:

Figure 4.11. In addition to needing to call poll within the timeout, a consumer must send a
heartbeat every ten seconds



There is another configuration timeout the session.timeout.ms which is set
at ten seconds for default value. Each KafkaConsumer runs a separate thread
for sending heartbeats indicating its still alive. Should a consumer fail to send
a heartbeat within ten seconds, it’s marked as dead and removed from the
group, triggering a rebalance. This two level approach for ensuring consumer
liveliness is essential to make sure all consumers are functioning and allows
for reassigning their topic-partition assignments to other members of the



group to ensure continued processing should one of them fail.

To give you a clear picture of how group membership works, let’s discuss a
the new terms group coordinator, rebalancing, and the group leader I just
spoke about. Let’s start with a visual representation of how these parts are
tied together:

Figure 4.12. Group coordinator is a broker assigned to track a subset of consumer groups and the
group leader is a consumer that communicates with the group coordinator



The group coordinator is a broker that handles membership for subset of all
available consumer groups. Not one single broker will act as the group
coordinator, the responsibility for that is spread around the different brokers.
The group coordinator monitors the membership of a consumer group via



requests to join a group or when a member is considered dead when it fails to
communicate (either a poll or heartbeat) within the given timeouts.

When the group coordinator detects a membership change it triggers a
rebalance for the existing members.

A rebalance is the process of having all members of the group rejoin so that
group resources (topic-partitions) can be evenly (as possible) distributed to
the other members. When a new member joins, then some topic partitions are
removed from some or all members of the existing group and are assigned to
the new member. When an existing member leaves, the opposite process
occurs, its topic-partitions are reassigned to the other active members.

The rebalance process is fairly straight forward, but it comes at a cost of time
lost processing waiting for the rebalance process to complete, known as a
"stop-the-world" or a eager rebalance. But with the release of Kafka 2.4,
there’s new rebalance protocol you can use called cooperative rebalancing.

Let’s take a quick look at both of these protocols, first with the eager
rebalancing

Eager rebalancing

Figure 4.13. Rebalancing with the eager or "stop-the-world" approach processing on all
partitions stops until reassigned but most of the partitions end up on with the original consumer





When the group coordinator detects a change in membership it triggers a
rebalance. This is true of both rebalance protocols we’re going to discuss.

Once the rebalance process initiates, each member of the group first gives up
ownership of all its assigned topic-partitions. Then they send a JoinGroup
request to the controller. Part of the request includes the topic-partitions that
consumer is interested in, the ones they just relinquished control of. As a
consequence of the consumers giving up their topic partitions is that
processing now stops.

The controller collects all of the topic-partition information from the group
and sends out the JoinGroup response, but the group leader receives all of
included topic-partition information.

  Note

Remember from chapter two in our discussion of the broker all actions are
executed in a request/response process.

The group leader takes this information and creates topic-partition
assignments for all members of the group. Then the group leader sends
assignment information to the coordinator in a SyncGroup request. Note that
the other members of the group also send SyncGroup requests, but don’t
include any assignment information. After the group controller receives the
assignment information from the leader, all members of the group get their
new assignment via the SyncGroup response.

Now with their topic-partition assignments, all members of the group begin
processing again. Take note again that no processing occurred from the time
group members sent the JoinGroup request until the SyncGroup response
arrived with their assignments. This gap in processing is known as a
synchronization barrier, and is required as it’s important to ensure that each
topic-partition only has one consumer owner. If a topic-partition had multiple
owners, undefined behavior would result.

  Note



During this entire process, consumer clients don’t communicate with each
other. All the consumer group members communicate only with the group
coordinator. Additionally only one member of the group, the leader, sets the
topic-partition assignments and sends it to the coordinator.

While the eager rebalance protocol gets the job done of redistributing
resources and ensuring only one consumer owns a given topic-partition, it
comes at a cost of downtime as each consumer is idle during the period from
the initial JoinGroup request and the SyncGroup response. For smaller
applications this cost might be negligible, but for applications with several
consumers and a large number of topic-partitions, the cost of down time
increases. Fortunately there’s another rebalancing approach that aims to
remedy this situation.

Incremental cooperative rebalancing

Figure 4.14. Rebalancing with cooperative approach processing continues and only stops for
partitions that will be reassigned





Introduced in the 2.4 Kafka release the incremental cooperative rebalance
protocol takes the approach that relabances don’t need to be so expensive.
The incremental cooperative rebalancing approach takes a different view of
rebalancing that we can summarize below:

1. Consumers don’t automatically give up ownership of all their topic-
partitions

2. The group leader identifies specific topic-partitions requiring new
ownership

3. Processing continues for topic-partitions that are not changing
ownership

The third bullet point here is the big win (in my opinion) with the cooperative
rebalancing approach. Instead of the "stop the world" approach, only those
topic-partitions which are moving will experience a pause in processing. In
other words, the synchronization barrier is much smaller.

I’m skipping over some of some details, so let’s walk through the process of
the incremental cooperative rebalancing protocol.

Just like before when the group controller detects a change in group
membership, it triggers a rebalance. Each member of the group encodes their
current topic-partition subscriptions in a JoinGroup request, but each member
retains ownership for the time being.

The group coordinator assembles all the subscription information and in the
JoinGroup response the group leader looks at the assignments and determines
which topic-partitions, if any, need to migrate to new ownership. The leader
removes any topic-partitions requiring new ownership from the assignments
and sends the updated subscriptions to the coordinator via a SyncGroup
request. Again, each member of the group sends a SyncGroup request, but
only the leaders` request contains the subscription information.

  Note

All members of the group receive a JoinGroup response, but only the
response to the group leader contains the assignment information. Likewise,



each member of the group issues a SyncGroup group request, but only the
leader encodes a new assignment. In the SyncGroup response, all members
receive their respective, possible updated assignment.

The members of group take the SyncGroup response and potentially calculate
a new assignment. Either revoking topic-partitions that are not included or
adding ones in the new assignment but not the previous one. Topic-partitions
that are included in both the old and new assignment require no action.

Members then trigger a second rebalance, but only topic-partitions changing
ownership are included. This second rebalance acts as the synchronization
barrier as in the eager approach, but since it only includes topic partitions
receiving new owners, it is much smaller. Additionally, topic-partitions that
are not moving, continue to process records!

After this discussion of the different rebalance approaches, we should cover
some broader information about partition assignment strategies available and
how you apply them.

Applying partition assignment strategies

We’ve already discussed that a broker serves as a group coordinator for some
subset of consumer groups. Since two different consumer groups could have
different ideas of how to distribute resources (topic-partitions), the
responsibility for which approach to use is entirely on the client side.

To choose the partition strategy you want your the KafkaConsumer instances
in a group to use, you set the the partition.assignment.strategy by
providing a list of supported partition assignment strategies. All of the
available petitioners implement the ConsumerPartitionAssignor interface.
Here’s a list of the available assignors with a brief description of the
functionality each one provides.

  Note

For Kafka Connect and Kafka Streams, which are abstractions built on top of
Kafka producers and consumers, use cooperative rebalance protocols and I’d



generally recommend to stay with the default settings. This discussion about
partitioners is to inform you of what’s available for applications directly
using a KafkaConsumer.

RangeAssignor - This is the default setting. The RangeAssignor uses an
algorithm of sorting the partitions in numerical order and assigning them
to consumers by dividing the number of available partitions by number
of available consumers. This strategy assigns partition to consumers in
lexicographical order.
RoundRobinAssignor - The RoundRobinAssignor takes all available
partitions and assigns a partition to each available member of the group
in a round-robin manner.
StickyAssignor - The StickyAssignor attempts to assign partitions in a
balanced manner as possible. Additionally, the StickyAssignor
attempts to always preserve existing assignments during a rebalance as
much as possible. The StickyAssignor follows the eager rebalancing
protocol.
CooperativeStickyAssignor - The CooperativeStickyAssignor follows
the same assignment algorithm as the StickyAssignor. The difference
lies in fact that the CooperativeStickyAssignor uses the cooperative
rebalance protocol.

While it’s difficult to provide concrete advice as each use case requires
careful analysis of its unique needs, in general for newer applications one
should favor using the CooperativeStickyAssignor for the reasons outlined
in the section on incremental cooperative rebalancing.

  Tip

If you are upgrading from a version of Kafka 2.3 or earlier you need to
follow a specific upgrade path found in the 2.4 upgrade documentation
(kafka.apache.org/documentation/{hash}upgrade_240_notable) to safely use
the cooperative rebalance protocol.

We’ve concluded our coverage of consumer groups and how the rebalance
protocol works. Next we’ll cover a different configuration - static
membership, that when a consumer leaves the group, there’s no initial



rebalance.

4.2.3 Static membership

In the previous section you learned that when a consumer instance shuts
down it sends a leave group request to the group controller. Or if it’s
considered unresponsive by the controller, it gets removed from the consumer
group. Either way the end result is the same, the controller triggers a
rebalance to re-assign resources (topic-partitions) to the remaining members
of the group.

While this protocol is exactly what you want to keep your applications
robust, there are some situations where you’d prefer slightly different
behavior. For example, let’s say you have several consumer applications
deployed. Any time you need to update the applications, you might do what’s
called a rolling upgrade or restart.

Figure 4.15. Rolling upgrades trigger multiple relabances





You’ll stop instance 1, upgrade and restart it, then move on to instance
number 2 and so it continues until you’ve updated every application. By
doing a rolling upgrade, you don’t lose nearly as much processing time if you
shut down every application at the same time. But what happens is this
"rolling upgrade", triggers two rebalances for every instance, one when the
application shuts down and another when it starts back up. Or consider a
cloud environment where an application node can drop off at any moment
only to have it back up an running once its failure is detected.

Even with the improvements brought by cooperative rebalancing, it would be
advantageous in these situations to not have a rebalance triggered
automatically for these transient actions. The concept of "static membership"
was introduced in the 2.3 version of Apache Kafka. We’ll use the following
illustration to help with our discussion of how static membership works

Figure 4.16. Static members don’t issue leave group requests when dropping out of a group and a
static id allows the controller to remember them





At a high-level with static membership you set a unique id in the consumer
configuration, group.instance.id. The consumer provides this id to the
controller when it joins a group and the controller stores this unique group-id.
When a consumer leaves the group, it does not send a leave group request.
When it rejoins it presents this unique membership id to the controller. The
controller looks it up and can then give back the original assignment to this
consumer with no rebalancing involved at all! The trade-off for using static
membership is that you’ll need to increase the session.timeout.ms
configuration to a value higher than the default of 10 seconds, as once a
session timeout occurs, then the controller kicks the consumer out of the
group and triggers a rebalance.

The value you choose should be long enough to account for transient
unavailability and not triggering a rebalance but not so long that a true failure
gets handled correctly with a rebalance. So if you can sustain ten minutes of
partial unavailability then maybe set the session timeout to eight minutes.
While static membership can be a good option for those running
KafkaConsumer applications in a cloud environment, it’s important to take
into account the performance implications before opting to use it. Note that to
take advantage of static membership, you must have Kafka brokers and
clients on version 2.3.0 or higher.

Next, we’ll cover a subject that is very important when using a
KafkaConsumer, commit the offsets of messages.

4.2.4 Committing offsets

In chapter two, we talked about how the broker assigns a number to incoming
records called an offset. The broker increments the offset by one for each
incoming record. Offsets are important because they serve to identify the
logical position of a record in a topic. A KafkaConsumer uses offsets to know
where it last consumed a record. For example if a consumer retrieves a batch
of records with offsets from 10 to 20, the starting offset of the next batch of
records the consumer wants to read starts at offset 21.

To make sure the consumer continues to make progress across restarts for
failures, it needs to periodically commit the offset of the last record it has



successfully processed. Kafka consumers provide a mechanism for automatic
offset commits. You enable automatic offset commits by setting the
enable.auto.commit configuration to true. By default this configuration is
turned on, but I’ve listed it here so we can talk about how automatic commits
work. Also, we’ll want to discuss the concept of a consumers' position vs. its
latest committed offset. There is also a related configuration,
auto.commit.interval.ms that specifies how much time needs to elapse
before the consumer should commit offsets and is based on the system time
of the consumer.

But first, lets show how automatic commits work.

Figure 4.17. With automatic commits enabled when returning to the top of the poll loop the
highest offset +1 of the previous batch could be committed if the auto commit interval has passed



Following from the graphic above, the consumer retrieves a batch of records
from the poll(Duration) call. Next the code takes the ConsumerRecords and



iterates over them and does some processing of the records. After that the
code returns to top of the poll loop and attempts to retrieve more records.
But before retrieving records, if the consumer has auto-commit enabled and
the amount of time elapsed since the last auto-commit check is greater than
the auto.commit.interval.ms interval, the consumer commits the offsets of
the records from the previous batch. By committing the offsets, we are
marking these records as consumed, and under normal conditions the
consumer won’t process these records again. I’ll describe what I mean about
this statement a little bit later.

What does it mean to commit offsets? Kafka maintains an internal topic
named _offsets where it stores the committed offsets for consumers. When
we say a consumer commits it’s not storing the offsets for each record it
consumes, it’s the highest offset, per partition, plus one that the consumer has
consumed so far that’s committed.

For example, in the illustration above, let’s say the records returned in the
batch contained offsets from 0-4. So when the consumer commits, it will be
offset 5.

Figure 4.18. A consumers committed position is the largest offset it has consumed so far plus one





So the committed position is offset that has been sucessfully stored, and it
indicates the starting record for the next batch it will retrieve. In this
illustration it’s 5. Should the consumer in this example fail or you restarted
the application the consumer would consume records starting at offset 5 again
since it wasn’t able to commit prior to the failure or restart.

Consuming from the last committed offset means that you are guaranteed to
not miss processing a record due to errors or application restarts. But it also
means that you may process a record more than once.

Figure 4.19. Restarting a consumer after processing without a commit means reprocessing some
records



If you processed some of the records with offsets larger than the latest one
committed, but your consumer failed to commit for whatever reason, this
means when you resume processing, you start with records from the
committed offset, so you’ll reprocess some of the records. This potential for



reprocessing is known as at-least-once. We covered at-least-once delivery in
the delivery semantics earlier in the chapter.

To avoid reprocessing records you could manually commit offsets
immediately after retrieving a batch of records, giving you at-most-once
delivery. But you run the risk of losing some records if your consumer should
encounter an error after committing and before it’s able to process the
records. Another option (probably the best), to avoid reprocessing is to use
the Kafka transactional API which guarantees exactly-once delivery.

Committing considerations

When enabling auto-commit with a Kafka consumer, you need to make sure
you’ve fully processed all the retrieved records before the code returns to the
top of the poll loop. In practice, this should present no issue assuming you are
working with your records synchronously meaning your code waits for the
completion of processing of each record. However, if you were to hand off
records to another thread for asynchronous processing or set the records aside
for later processing, you also run the risk of potentially not processing all
consumed records before you commit. Let me explain how this could happen.

Figure 4.20. Asynchronous processing with auto committing can lead to potentially lost records



When you hand the records off to an asynchronous process, the code in your
poll loop won’t wait for the successful processing of each record. When your
application calls the poll() method again, it commits the current position i.e
the highest offset + 1 from the for each topic-partition consumed in the
previous batch. But your async process may not completed working with all
the records up to the highest offset at the time of the commit. If your
consumer application experienced a failure or a shutdown for any reason,
when it resumes processing, it will start from the last committed offset, which
skips over the un-processed records in the last run of your application.



To avoid prematurely-maturely committing records before you consider them
fully processed, then you’ll want to disable auto-commits by setting
enable.auto.commit to false.

But why would you need to use asynchronous processing requiring manually
committing? Let’s say when you consume records, you do some processing
that takes long time (up to 1 second) to process each record. The topic you
consume from has a high volume of traffic, so you don’t want to fall behind.
So you decide that as soon as you consume a batch of records, you’ll hand
them off to an async process so the consumer can immediately return to the
poll call to retrieve the next batch.

Using an approach like this is called pipeling. But you’ll need make sure
you’re only committing the offsets for records that have been successfully
processed, which means turning off auto-committing and coming up with a
way to commit only records that your application considers fully processed.
The following example code shows one example approach you could take.
Note that I’m only showing the key details here and you should consult the
source code to see the entire example

Listing 4.4. Consumer code found in bbejeck.chapter_4.pipelining.PipliningConsumerClient

// Details left out for clarity

ConsumerRecords<String, ProductTransaction> consumerRecords = consumer.poll(

  Duration.ofSeconds(5));

if (!consumerRecords.isEmpty()) {

    recordProcessor.processRecords(consumerRecords);     #1

    Map<TopicPartition, OffsetAndMetadata> offsetsAndMetadata =

      recordProcessor.getOffsets(); #2

    if (offsetsAndMetadata != null) {

        consumer.commitSync(offsetsAndMetadata); #3

    }

The key point with this consumer code is that the
RecordProcessor.processRecords() call returns immediately, so the next
call to RecordProcessor.getOffsets() returns offsets from a previous batch
of records that are fully processed. What I want to emphasize here is how the
code hands over new records for processing then collects the offsets of
records already fully processed for committing. Let’s take a look at the
processor code to see this is done:



Listing 4.5. Asynchronous processor code found in
bbejeck.chapter_4.piplining.ConcurrentRecordProcessor

  Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>(); 

  consumerRecords.partitions().forEach(topicPartition -> {  #2

         List<ConsumerRecord<String,ProductTransaction>> topicPartitionRecords =

    consumerRecords.records(topicPartition); #3

         topicPartitionRecords.forEach(this::doProcessRecord); #4

         long lastOffset = topicPartitionRecords.get(

    topicPartitionRecords.size() - 1).offset(); #5

         offsets.put(topicPartition, new OffsetAndMetadata(lastOffset + 1)); 

        });

   ....

   offsetQueue.offer(offsets); #7

The the takeaway with the code here is that by iterating over records by
TopicPartition it’s easy to create the map entry for the offsets to commit.
Once you’ve iterated over all the records in the list, you only need to get the
last offset. You, the observant read might be asking yourself "Why does the
code add1 to the last offset?" When committing offsets it’s always the offset
of the next record you’ll retrieve. For example if the last offset is 5, you want
to commit 6. Since you’ve already consumed 0-5 you’re only interested in
consuming records from offset 6 forward.

Then you simply use the TopicPartition from the top of the loop as the key
and the OffsetAndMetadata object as the value. When the consumer retrieves
the offsets from the queue, it’s safe to commit those offsets as the records
have been fully processed. The main point to this example is how you can
ensure that you only commit records you consider "complete" if you need to
asynchronously process records outside of the Consumer.poll loop. It’s
important to note that this approach only uses a *single thread* and
consumer for the record processing which means the code still processes the
records in order, so it’s safe to commit the offsets as they are handed back.

  Note

For a fuller example of threading and the KafkaConsumer you should consult
www.confluent.io/blog/introducing-confluent-parallel-message-processing-
client/ and github.com/confluentinc/parallel-consumer.



When offsets aren’t found

I mentioned earlier that Kafka stores offsets in an internal topic named
_offsets. But what happens when a consumer can’t find its offsets? Take the
case of starting a new consumer against an existing topic. The new group.id
will not have any commits associated with it. So the question becomes where
to start consuming if offsets aren’t found for a given consumer? The
KafkaConsumer provides a configuration, offset.reset.policy which
allows you to specify a relative position to start consuming in the case there’s
no offsets available for a consumer.

There are three settings:

1. earliest - reset the offset to the earliest one
2. latest - reset the offset to the latest one
3. none - throw an exception to the consumer

With a setting of earliest the implications are that you’ll start processing
from the head of the topic, meaning you’ll see all the records currently
available. Using a setting of latest means you’ll only start receiving records
that arrive at the topic once your consumer is online, skipping all the previous
records currently in the topic. The setting of none means that an exception
gets thrown to the consumer and depending if you are using any try/catch
blocks your consumer may shut down.

The choice of which setting to use depends entirely on your use case. It may
be that once a consumer starts you only care about reading the latest data or it
may be too costly to process all records.

Whew! That was quite a detour, but well worth the effort to learn some of the
critical aspects of working with the KafkaConsumer.

So far we’ve covered how to build streaming applications using a
KafkaProducer and KafkaConsumer. What’s been discussed is good for those
situations where your needs are met with at-least-once processing. But there
are situations where you need to guarantee that you process records exactly
once. For this functionality you’ll want to consider using the *exactly once*
semantics offered by Kafka.



4.3 Exactly once delivery in Kafka

The 0.11 release of Apache Kafka saw the KafkaProducer introduce exactly
once message delivery. There are two modes for the KafkaProducer to
deliver exactly once message semantics; the idempotent producer and the
transactional producer.

  Note

Idempotence means you can perform an operation multiple times and the
result won’t change beyond what it was after the first application of the
operation.

The idempotent producer guarantees that the producer will deliver messages
in-order and only once to a topic-partition. The transactional producer allows
you to produce messages to multiple topics atomically, meaning all messages
across all topics succeed together or none at all. In the following sections,
we’ll discuss the idempotent and the transactional producer.

4.3.1 Idempotent producer

To use the idempotent producer you only need to set the configuration
enable.idempotence=true. There are some other configuration factors that
come into play:

1. max.in.flight.requests.per.connection must not exceed a value of
5 (the default value is 5)

2. retries must be greater than 0 (the default value is
Integer.MAX_VALUE)

3. acks must be set to all. If you do not specify a value for the acks
configuration the producer will update to use the value of all, otherwise
the producer throws a ConfigException.

Listing 4.6. KafkaProducer configured for idempotence

// Several details omitted for clarity

Map<String, Object> producerProps = new HashMap<>();



//Standard configs

producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "somehost:9092");

producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ...);

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ...);

//Configs related to idempotence

producerProps.put(ProducerConfig.ACKS_CONFIG, "all"); #1

producerProps.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true); 

producerProps.put(ProducerConfig.RETRIES_CONFIG, Integer.MAX_VALUE); 

producerProps.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 5);

If you recall from our earlier discussion about the KafkaProducer we
outlined a situation where due to errors and retries record batches within a
partition can end up out of order. To avoid that situation, it was suggested to
set the max.infligh.requests.per.connection to one. Using the
idempotent producer removes the need for you to adjust that configuration.
We also discussed in the message delivery semantics to avoid possible record
duplication, you would need to set retries to zero risking possible data loss.

Using the idempotent producer avoids both of the records-out-of-order and
possible-record-duplication-with-retries. If you requirements are for strict
ordering within a partition and no duplicated deliver of records then using the
idempotent producer is a must.

  Note

As of the 3.0 release of Apache Kafka the idempotent producer settings are
the default so you’ll get the benefits of using it out of the box with no
additional configuration needed.

The idempotent producer uses two concepts to achieve its in-order and only-
once semantics- unique producer ids and sequence numbers for messages.
The idempotent producer gets initiated with a unique producer id (PID).
Since each creation of a idempotent producer results in a new PID,
idempotence for a producer is only guaranteed during a single producer
session. For a given PID a monotonically sequence id (starting at 0) gets
assigned to each batch of messages. There is a sequence number for each
partition the producer sends records to.



Figure 4.21. The broker keeps track of sequence numbers for each PID and topic-partition it
receives





The broker maintains a listing (in-memory) of sequence numbers per topic-
partition per PID. If the broker receives a sequence number not exactly one
greater than the sequence number of the last committed record for the given
PID and topic-partition, it will reject the produce request.

Figure 4.22. The broker rejects produce requests when the message sequence number doesn’t
match expected one



If the number is less than the expected sequence number, it’s a duplication
error which the producer ignores. If the number is higher than expected the



produce request results in a OutOfOrderSequenceException. For the
idempotent producer, the OutOfOrderSequenceException is not fatal error
and retries will continue. Essentially when there is a retryable error, if there
are more than 1 in-flight requests, the broker will reject the subsequent
requests and the producer will put them back in order to resend them to the
broker.

So if you require strict ordering of records within a partition, then using the
idempotent producer is a must. But what do you do if you need to write to
multiple topic-partitions atomically? In that case you would opt to use the
transactional producer which we’ll cover next.

4.3.2 Transactional producer

Using the transactional producer allows you to write to multiple topic-
partitions atomically; all of the writes succeed or none of them do. When
would you want to use the transactional producer? In any scenario where you
can’t afford to have duplicate records, like in the financial industry for
example.

To use the transaction producer, you need to set the producer configuration
transactional.id to a unique value for the producer. Kafka brokers use the
transactional.id to enable transaction recovery across multiple sessions
from the same producer instance. Since the id needs to be unique for each
producer and applications can have multiple producers, it’s a good idea to
come up with a strategy where the id for the producers represents the segment
of the application its working on.

  Note

Kafka transaction are a deep subject and could take up an entire chapter on its
own. For that reason I’m not going to go into details about the design of
transactions. For readers interested in more details here’s a link to the original
KIP (KIP stands for Kafka Improvement Process)
cwiki.apache.org/confluence/display/KAFKA/KIP-98+-
+Exactly+Once+Delivery+and+Transactional+Messaging#KIP98ExactlyOnceDeliveryandTransactionalMessaging-



Brokerconfigs

When you enable a producer to use transactions, it is automatically upgraded
to an idempotent producer. You can use the idempotent producer without
transactions, but you can’t do the opposite, using transactions without the
idempotent producer. Let’s dive into an example. We’ll take our previous
code and make it transactional

Listing 4.7. KafkaProducer basics for transactions

HashMap<String, Object> producerProps = new HashMap<>();

producerProps.put("transactional.id", "set-a-unique-transactional-id"); 

Producer<String, String> producer = new KafkaProducer<>(producerProps);

producer.initTransactions(); #1

try {

    producer.beginTransaction(); #2

    producer.send(topic, "key", "value"); #3

    producer.commitTransaction();   #4

} catch (ProducerFencedException | OutOfOrderSequenceException

  | AuthorizationException e) {  #5

      producer.close();

} catch (KafkaException e) {     #6

     producer.abortTransaction();

     // safe to retry at this point #7

}

After creating a transactional producer instance is to first thing you must here
is execute the initTransactions() method. The initTransaction sends a
message to the transaction coordinator (the transaction coordinator is a broker
managing transactions for producers) so it can register the transactional.id
for the producer to manage its transactions. The transaction coordinator is a
broker managing transactions for producers.

If the previous transaction has started, but not finished, then this method
blocks until its completed. Internally, it also retrieves some metadata
including something called an epoch which this producer uses in future
transactional operations.

Before you start sending records you call beginTransaction(), which starts



the transaction for the producer. Once the transaction starts,The transaction
coordinator will only wait for a period of time defined by the
transaction.timeout.ms (one minute by default) and it without an update (a
commit or abort) it will proactively abort the transaction. But the transaction
coordinator does not start the clock for transaction timeouts until the broker
starts sending records. Then after the code completes processing and
producing the records, you commit the transaction.

You should notice a subtle difference in error handling between the
transactional example from the previous non-transactional one. With the
transactional produce you don’t have to check of an error occurred either with
a Callback or checking the returned Future. Instead the transactional
producer throws them directly for your code to handle.

It’s important to note than with any of the exceptions in the first catch block
are fatal and you must close the producer and to continue working you’ll
have to create a new instance. But any other exception is considered re-
tryable and you just need to abort the current transaction and start over.

Of the fatal exceptions, we’ve already discussed the
OutOfOrderSequenceException in the idempotent producer section and the
AuthorizationException is self explanatory. Be we should quickly discuss
the ProducerFencedException. Kafka has a strict requirement that there is
only one producer instance with a given transactional.id. When a new
transactional producer starts, it "fences" off any previous producer with the
same id must close. However, there is another scenario where you can get a
ProducerFencedException with out starting a new producer with the same
id.

Figure 4.23. Transactions proactively aborted by the Transaction Coordinator cause an increase
in the epoch associated with the transaction id





When you execute the producer.initTransactions() method, the
transaction coordinator increments the producer epoch. The producer epoch
is a number the transaction coordinator associates with the transactional id.
When the producer makes any transactional request, it provides the epoch
along with its transaction id. If the epoch in the request doesn’t match the
current epoch the transaction coordinator rejects the request and the producer
is fenced.

But if the current producer can’t communicate with the transaction
coordinator for any reason and the timeout expires, as we discussed before,
the coordinator proactively aborts the transaction and increments the epoch
for that id. When the producer attempts to work again after the break in
communication, it finds itself fenced and you must close the producer and
restart at that point.

  Note

There is example code for transactional producers in the form of a test
located at
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java in
the source code.

So far, I’ve only covered how to produce transactional records, so let’s move
on consuming them.

4.3.3 Consumers in transactions

Kafka consumers can subscribe to multiple topics at one time, with some of
them containing transactional records and others not. But for transactional
records, you’ll only want to consume ones that have been successfully
committed. Fortunately, it’s only a matter of a simple configuration. To
configure your consumers for transactional records you set isolation.level
configuration to read_committed.

Listing 4.8. KafkaConsumer configuration for transactions



// Several details omitted for clarity

HashMap<String, Object> consumerProps = new HashMap<>();

consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, "the-group-id");

consumerProps.put(ConsumerConfig.ISOLATION_LEVEL_CONFIG, "read_committed"); 

consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);

With this configuration set, your consumer is guaranteed to only retrieve
successfully committed transaction records. If you use the read_uncommitted
setting, then the consumer will retrieve both successful and aborted
transactional records. The consumer is guaranteed to retrieve non-
transactional records with either configuration set.

There is difference in highest offset a consumer can retrieve in the
read_committed mode.

Figure 4.24. High water mark vs. last stable offset in a transactional environment



In Kafka there is a concept of the last stable offset (LSO) which is an offset
where all offsets below it have been "decided". There’s another concept
known as the high water mark. The high water mark is the largest offset
successfully written to all replicas. In a non-transactional environment, the
LSO is the same as the high water mark as records are considered decided or
durable written immediately. But with transactions, an offset can’t be
considered decided until the transaction is either committed or aborted, so



this means the LSO is the offset of the first open transaction minus 1.

This a non-transactional environment, the consumer can retrieve up the the
high water mark in a poll() call. But with transactions it will only retrieve
up to the LSO.

  Note

The test located
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java
also contains a couple of tests demonstrating consumer behavior with both
read_committed read read_uncommitted configuration.

So far we’ve covered how to use a producer and a consumer separately. But
there’s one more case to consider and that is using a consumer and producer
together within a transaction.

4.3.4 Producers and consumers within a transaction

When building applications to work with Kafka it’s a fairly common practice
to consume records from a topic, perform some type of transformation on the
records, then produce those transformed records back to Kafka in a different
topic. Records are considered consumed when the consumer commits the
offsets. If you recall, committing offsets is simply writing to a topic
(_offsets).

So if you are doing a consume - transform - produce cycle, you’d want to
make sure that committing offsets is part of the transaction as well. Otherwise
you could end up in a situation where you’ve committed offsets for
consumed records, but transaction fails and restarting the application skips
the recently processed records as the consumer committed the offsets.

Imagine you have a stock reporting application and you need to provide
broker compliance reporting. It’s very important that the compliance reports
are sent only once so you decide that the best approach is to consume the
stock transactions and build the compliance reports within a transaction. This
way you are guaranteed that your reports are sent only once.



Listing 4.9. Example of the consume-transform-produce with transactions found in
src/test/java/chapter_4/TransactionalConsumeTransformProduceTest.java

// Note that details are left out here for clarity

Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>(); 

producer.beginTransaction();                #2

consumerRecords.partitions().forEach(topicPartition -> {

    consumerRecords.records(topicPartition).forEach(record -> {

        lastOffset.set(record.offset());

        StockTransaction stockTransaction = record.value();

        BrokerSummary brokerSummary = BrokerSummary.newBuilder() #3

        producer.send(new ProducerRecord<>(outputTopic, brokerSummary));

    });

    offsets.put(topicPartition,

      new OffsetAndMetadata(lastOffset.get() + 1L)); #4

});

try {

    producer.sendOffsetsToTransaction(offsets,

      consumer.groupMetadata()); #5

    producer.commitTransaction();  #6

 }

From looking at code above, the biggest difference from a non-transactional
consume-transform-produce application is that we keep track of the
TopicPartition objects and the offset of the records. We do this because we
need to provide the offsets of the records we just processed to the
KafkaProducer.setOffsetsToTransaction method. In consume-transform-
produce applications with transactions, it’s the producer that sends offsets to
the consumer group coordinator, ensuring that the offsets are part of the
transaction. Should the transaction fail or get aborted, then the offsets are not
committed. By having the producer commit the offsets, you don’t need any
coordination between the producer and consumer in the cases of rolled-back
transactions.

So far we’ve covered using producer and consumer clients for sending and
receiving records to and from a Kafka topic. But there’s another type of client
which uses the Admin API and it allows you to perform topic and consumer
group related administrative functions programmatically.



4.4 Using the Admin API for programmatic topic
management

Kafka provides an administrative client for inspecting topics, broker, ACLs
(Access Control Lists) and configuration. While there are several functions
you can use the admin client, I’m going to focus on the administrative
functions for working with topics and records. The reason I’m doing this is
I’m presenting what I feel are the use cases most developers will see in
development of their applications. Most of the time, you’ll have a operations
team responsible for the management of your Kafka brokers in production.
What I’m presenting here are things you can do to facilitate testing a
prototyping an application using Kafka.

4.4.1 Working with topics programmatically

To create topics with the admin client is simply a matter of creating the
admin client instance and then executing the command to create the topic(s).

Listing 4.10. Creating a topic

Map<String, Object> adminProps = new HashMap<>();

adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) { #1

        final List<NewTopic> topics = new ArrayList<>)();  #2

    topics.add(new NewTopic("topic-one", 1, 1)); #3

    topics.add(new NewTopic("topic-two", 1, 1));

    adminClient.createTopics(topics); #4

}

  Note

I’m referring to an admin client but the type is the interface Admin. There is
an abstract class AdminClient, but it’s use is discouraged over using the
Admin interface instead. An upcoming release may remove the AdminClient



class.

This code can be especially useful when you are prototyping building new
applications by ensuring the topics exist before running the code. Let’s
expand this example some and show how you can list topics and optionally
delete one as well.

Listing 4.11. More topic operations

Map<String, Object> adminProps = new HashMap<>();

adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) {

     Set<String> topicNames = adminClient.listTopics().names.get(); 

     System.out.println(topicNames); #2

     adminClient.deleteTopics(Collections.singletonList("topic-two")); 

}

An additional note for annotation one above, is that the Admin.listTopics()
returns a ListTopicResult object. To get the topic names you use the
ListTopicResult.names() which returns a KafkaFuture<Set<String>> so
you use use the get() method which blocks until the admin client request
completes. Since we’re using a broker container running on your local
machine, chances are this command completes immediately.

There are several other methods you can execute with the admin client such
as deleting records and describing topics. But the way you execute them is
very similar, so I wont list them here, but look at the source code
(src/test/java/bbejeck/chapter_4/AdminClientTest.java) to see more examples
of using the admin client.

  Tip

Since we’re working on a Kafka broker running in a docker container on your
local machine, we can execute all the admin client topic and record
operations risk free. But you should exercise caution if you are working in a
shared environment to make sure you don’t create issues for other
developers. Additionally, keep in mind you might not have the opportunity to



use the admin client commands in your work environment. And I should
stress that you should never attempt to modify topics on the fly in production
environments.

That wraps up our coverage of using the admin API. In our next and final
section we’ll talk about the considerations you take into account for those
times when you want to produce multiple event types to a topic.

4.5 Handling multiple event types in a single topic

Let’s say you’ve building an application to track activity on commerce web
site. You need to track the click-stream events such as logins and searches
and any purchases. Conventional wisdom says that the different events
(logins, searches) and purchases could go into separate topics as they are
separate events. But there’s information you can gain from examining how
these related events occurred in sequence.

But you’ll need to consume the records from the different topics then try and
stitch the records together in proper order. Remember, Kafka guarantees
record order within a partition of a topic, but not across partitions of the same
topic not to mention partitions of other topics.

Is there another approach you can take? The answer is yes, you can produce
those different event types to the same topic. Assuming you providing a
consistent key across the event types, you are going receive the different
events in-order, on the same topic-partition.

At the end of chapter three (Schema Registry), I covered how you can use
multiple event types in a topic, but I deferred on showing an example with
producers and consumers. Now we’ll go through an example now on how
you can produce multiple event types and consume multiple event types
safely with Schema Registry.

In chapter three, specifically the Schema references and multiple events
per topic section I discussed how you can use Schema Registry to support
multiple event types in a single topic. I didn’t go through an example using a
producer or consumer at that point, as I think it fits better in this chapter. So



that’s what we’re going to cover now.

  Note

Since chapter three covered Schema Registry, I’m not going to do any review
in this section. I may mention some terms introduced in chapter three, so you
may need to refer back to refresh your memory if needed.

Let’s start with the producer side.

4.5.1 Producing multiple event types

We’ll use this Protobuf schema in this example:

{

syntax = "proto3";

package bbejeck.chapter_4.proto;

import "purchase_event.proto";

import "login_event.proto";

import "search_event.proto";

option java_outer_classname = "EventsProto";

message Events {

          oneof type {

            PurchaseEvent purchase_event = 1;

            LogInEvent login_event = 2;

            SearchEvent search_event = 3;

          }

          string key = 4;

        }

}

What happens when you generate the code from the protobuf definition you
get a EventsProto.Events object that contains a single field type that
accepts one of the possible three event objects (a Protobuf oneof field).

Listing 4.12. Example of creating KafkaProducer using Protobuf with a oneof field



// Details left out for clarity

...

producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

  StringSerializer.class);

producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

  KafkaProtobufSerializer.class); #1

...

Producer<String, EventsProto.Events> producer = new KafkaProducer<>(producerConfigs)); 

Since Protobuf doesn’t allow the oneof field as a top level element, the
events you produce always have an outer class container. As a result your
producer code doesn’t look any different for the case when you’re sending a
single event type. So the generic type for the KafkaProducer and
ProducerRecord is the class of the Protobuf outer class,
EventsProto.Events in this case.

In contrast, if you were to use an Avro union for the schema like this example
here:

Listing 4.13. Avro schema of a union type

[

  "bbejeck.chapter_3.avro.TruckEvent",

  "bbejeck.chapter_3.avro.PlaneEvent",

  "bbejeck.chapter_3.avro.DeliveryEvent"

]

Your producer code will change to use a common interface type of all
generated Avro classes:

Listing 4.14. KafkaProducer instantiation with Avro union type schema

//Some details left out for clarity

producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

  StringSerializer.class);

producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

  KafkaAvroSerializer.class); #1

producerConfigs.put(AbstractKafkaSchemaSerDeConfig.AUTO_REGISTER_SCHEMAS,

  false); #2

producerConfigs.put(AbstractKafkaSchemaSerDeConfig.USE_LATEST_VERSION,

  true); #3



Producer<String, SpecificRecord> producer = new KafkaProducer<>(

  producerConfigs()) #4

Because you don’t have an outer class in this case each event in the schema is
a concrete class of either a TruckEvent, PlaneEvent, or a DeliveryEvent. To
satisfy the generics of the KafkaProducer you need to use the
SpecificRecord interface as every Avro generated class implements it. As
we covered in chapter three, it’s crucial when using Avro schema references
with a union as the top-level entry is to disable auto-registration of schemas
(annotation two above) and to enable using the latest schema version
(annotation three).

Now let’s move to the other side of the equation, consuming multiple event
types.

4.5.2 Consuming multiple event types

When consuming from a topic with multiple event types, depending how
your approach, you may need to instantiate the KafkaConsumer with a generic
type of a common base class or interface that all of the records implement.

Let’s consider using Protobuf first. Since you will always have an outer
wrapper class, that’s the class you’ll use in the generic type parameter, the
value parameter in this example.

Listing 4.15. Configuring the consumer for working with multiple event types in Protobuf

//Other configurations details left out for clarity

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

  KafkaProtobufDeserializer.class); #1

consumerProps.put(

  KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,

    EventsProto.Events.class); #2

Consumer<EventsProto.Events> consumer = new KafkaConsumer<>(

  consumerProps); #3

You are setting up your consumer as you’ve seen before; you’re configuring



the deserializer to return a specific type, which is the EventsProto.Events
class in this case. With Protobuf, when you have a oneof field, the generated
Java code includes methods to help you determine the type of the field with
hasXXX methods. In our case the EventsProto.Events object contains the
following 3 methods:

 hasSearchEvent()

 hasPurchaseEvent()

 hasLoginEvent()

The protobuf generated Java code also contains an enum named <oneof
field name>Case. In this example, we’ve named the oneof field type so it’s
named TypeCase and you access by calling
EventsProto.Events.getTypeCase(). You can use the enum to determine
the underlying object succinctly:

//Details left out for clarity

switch (event.getTypeCase()) {

    case LOGIN_EVENT -> {   #1

        logins.add(event.getLoginEvent()); #2

    }

    case SEARCH_EVENT -> {

        searches.add(event.getSearchEvent());

    }

    case PURCHASE_EVENT ->  {

        purchases.add(event.getPurchaseEvent());

    }

}

Which approach you use for determining the type is a matter of personal
choice.

Next let’s see how you would set up your consumer for multiple types with
the Avro union schema:

Listing 4.16. Configuring the consumer for working with union schema with Avro

//Other configurations details left out for clarity

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

  KafkaAvroDeserializer.class); #1

consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,



  true); #2

Consumer<SpecificRecord> consumer = new KafkaConsumer<>(consumerProps); 

As you’ve seen before you specify the KafkaAvroDeserializer for the
deserializer configuration. We also covered before how Avro is slightly
different from Protobuf and JSON Schema in that you tell it to return the
specific class type, but you don’t provide the class name. So when you have
multiple event types in a topic and you are using Avro, the consumer needs to
use the SpecificRecord interface again in the generics shown in annotation
three.

So by using the SpecificRecord interface when you start retrieving records
from the Consumer.poll call you’ll need to determine the concrete type to do
any work with it.

Listing 4.17. Determining the concrete type of a record returned from a consumer with Avro
union schemas

// Details left out for clarity

SpecificRecord avroRecord = record.value();

if (avroRecord instanceof PlaneEvent) {

    PlaneEvent planeEvent = (PlaneEvent) avroRecord;

    ....

} else if (avroRecord instanceof TruckEvent) {

    TruckEvent truckEvent = (TruckEvent) avroRecord;

    ....

} else if (avroRecord instanceof DeliveryEvent) {

    DeliveryEvent deliveryEvent = (DeliveryEvent) avroRecord;

   ....

}

The approach here is similar to that of what you did with Protobuf but this is
at the class level instead of the field level. You could also choose to model
your Avro approach to something similar of Protobuf and define record that
contains a field representing the union. Here’s an example:

Listing 4.18. Avro with embedding the union field in a record

{

  "type": "record",



  "namespace": "bbejeck.chapter_4.avro",

  "name": "TransportationEvent", #1

  "fields" : [

    {"name": "txn_type", "type": [  #2

      "bbejeck.chapter_4.avro.TruckEvent",

      "bbejeck.chapter_4.avro.PlaneEvent",

      "bbejeck.chapter_4.avro.DeliveryEvent"

    ]}

  ]

}

In this case, the generated Java code provides a single method getTxnType(),
but it has return type of Object. As a result you’ll need to use the same
approach of checking for the instance type as you did above when using a
union schema, essentially just pushing the issue of determining the record
type from the class level to the field level.

  Note

Java 16 introduces pattern matching with the instanceof keyword that
removes the need for casting the object after the instanceof check

4.6 Summary

Kafka Producers send records in batches to topics located on the Kafka
broker and will continue to retry sending failed batches until the
delivery.timeout.ms configuration expires. You can configure a
Kafka Producer to be an idempotent producer meaning it guarantees to
send records only once and in-order for a given partition. Kafka
producers also have a transactional mode that guarantees exactly once
delivery of records across multiple topics. You enable the Kafka
transactional API in producers by using the configuration
transactional.id which must be a unique id for each producer. When
using consumers in the transactional API, you want to make sure you set
the isolation.level to read committed so you only consume
committed records from transactional topics.
Kafka Consumers read records from topics. Multiple consumers with the



same group id get topic-partition assignments and work together as one
logical consumer. Should one member of the group fail its topic-
partition assignment(s) are redistributed to other members of the group
via process known as rebalancing. Consumers periodically commit the
offsets of consumed records so restarting after a shut-down they pick up
where they left of processing.
Kafka producers and consumers offer three different types of delivery
guarantees at least once, at most once, and exactly once. At least once
means no records are lost, but you may receive duplicates due to retries.
At most once means that you won’t receive duplicate records but there
could be records lost due to errors. Exactly once delivery means you
don’t receive duplicates and you won’t lose any records due to errors.
Static membership provides you with stability in environments where
consumers frequently drop off, only to come back online within a
reasonable amount of time.
The CooperativeStickyAssignor provides the much improved
rebalance behavior. The cooperative rebalance protocol is probably the
best choice to use in most cases as it significantly reduces the amount of
downtime during a rebalance.
The Admin API provides a way to create and manage topics, partitions
and records programmatically.
When you have different event types but the events are related and
processing them in-order is important it’s worth considering placing the
multiple event types in a single topic.



5 Kafka Connect
This chapter covers

Getting started with Kafka Connect
Applying Single Message Transforms
Building and deploying your own Connector
Making your Connector dynamic with a monitoring thread
Creating a custom transformation

In this chapter we’re going to learn how to easily move events into and out of
Apache Kafka. While Kafka can function as a central nervous system for
data, it’s primary function is to provide a decoupled and centrilized approach
to data access, but there are other important services, like full-text searching,
report generation, and data analysis that can only be serviced by applications
specific to those purposes. No one technology or application can satisfy the
needs of a business or organization.

We’ve established in earlier chapters that Kafka simplifies the architecture
for a technology company by ingesting events once and any group within the
organization can consume events independent of each other. In the cases
mentioned above where the consumer is another application you’re left
writing consumers for the application. If you have more than one, you’ll end
up repeating a lot of code. A better approach would be to have an established
framework that you can deploy that handles either getting data from an
application into Kafka or getting data out of Kafka into an external
application. That framework does exist and it’s a key component of Apache
Kafka - Kafka Connect.

Kafka Connect is part of the Apache Kafka project and provides the avilibity
to integrate Kafka with other systems like relational databases, search
engines, NoSql stores, and Cloud object stores and data wharehouses
systems. By using Connect you can easily stream large amounts of data in
and out of Kafka. The ability to perform this streaming integration between
Kafka is critical to include legacy systems into todays event streaming



applications.

Actually, by using Connect you can achieve a two-way flow between existing
architectures and new applications. For example you can take incoming event
data from Kafka and migrate it a typcial Model-View-Controller (MVC)
application by using a connector to write results to a relational database. So
you could consider Kafka Connect as a sort of "glue" that enables you to
seemlessly integrate different applications with new sources of event data.

One concrete example of using Kafka Connect is to capture changes in a
database table as they occur called Change Data Capture or CDC. CDC
works by exporting changes to a database table (INSERT, UPDATE, and
DELETE) to other applications. By using CDC you are taking the database
changes and storing them in a Kafka topic, making them available to any
downstream consumers with low-latency. One of the best parts of this
integration is that the old application doesn’t need to change, it’s business as
usual.

Now you could implement this type of work yourself using producer and
consumer clients. But saying that statement is over simplification of all the
work you would be required to put in getting that applcation production
ready. Not to mention the fact that each system you are consuming from or
producing to would require different handling.

Consuming changes from a relational database isnt the same as consuming
from a NoSQL store and producing records to ElasticSearch is different from
producing records to Amazon’s S3 storage. So it makes sense to go with a
proven solution that has serveral off-the-shelf components ready for you to
use. There are literally hundreds of connectors available from Confluent at
https://www.confluent.io/hub/ - while some are commercial and require
payment, there are over one hundred connectors that are freely available for
you to use.

Connect runs in a separate process from a Kafka cluster, either as single
application or several instances as a distributed application. The different
connectors are supplied as plugins that you configure on the classpath. There
is no coding invovled to run a connector, you supply a JSON configuration
file to the connect server. Having said that, if there isn’t a connector available



to cover your use case, you have the ability to implement your own connector
as well. We’ll cover creating a custom connector in the last section of this
chapter.

When it comes to Connect it’s important to understand there are two kinds of
connectors sources and sinks. A source connector will consume data from an
external source such as a Postgres or MySql database, MongoDB or an S3
bucket into Kafka topics. A sink connector does the opposite, it produces
event data from a Kafka topic into an external applciation like ElasticSearch
or Google BigQuery. Additionally, due to Kafka’s design you can have more
than one sink connector exporting data from a Kafka topic at one time. This
pattern of multiple sink connectors means that you can take an existing
application and with a combination of source and sink connectors, share its
data with other systems without having to make any changes to the original
applicaiton.

Finally, Connect provides a way to modify data either coming into or out of
Kafka. Single Message Transforms or SMT allow you modify the format of
records from the source system when reading it into a Kafka. Or if you need
to change the format of a record to match the target system you can use an
SMT there as well. For example, when importing data from a database table
with customer data, you may want to mask sensitive data fields with the
MaskField SMT. There’s also the ability to transform the format of the data.

Let’s say you’re using Protobuf format in your Kafka cluster. You have a
database table that feeds a topic via source connector and for the target topic
you also have a sink connector writing records out to a Redis key-value store.
In both cases neither the database or Redis works with Protobuf format. But
by using a value converter you can seemlessly transform the incoming
records into Protobuf format from the source connector while the sink
connector will use another value converter to change the outgoing records
back into plain text from Protobuf.

To wrap up our introduction, in this chapter you’ll learn how to deploy and
use Kafka Connect for integrating external systems with Kafka, enabling you
to build event streaming data pipelines. You’ll learn how to apply message
transforms to make changes to incoming or outging records and how to build
your own transformations. Finally we’ll cover how to build your own



connector, just in case there’s not an existing one that will meet your needs.

5.1 Integrating external applications into Kafka

We’ve learned so far what Connect is and that it acts as a sort of "glue" that
can stitch different systems together, but let’s see this in acton with an
example.

Imagine you are responsible for coordinating new student signups for college
orientation. The students indicate which orientation session the will attend
through a web form that the college has been using for some time. It used to
be that when the student arrived for orientation, other departments, housing,
food service, guidance would need to meet with the students. In order to use
the information the students applied on the form, a staff member would print
out the information and hand out paper copies to the other staff members
from each department.

But this process was error prone and could be time consuming as other staff
members were seeing the student information for the first time and figuring
out the logistics for each student on the spot is time consuming. It would be
better if there was a process in place to share the information as soon as as
student signed up. You’ve learned that the university has recently embarked
on a technology modernization approach and have adopted Kafka at the
center of this effort.

The office of student affairs, the department responsible for getting
orientation information, is set on their current application structure which is a
basic web application that ends up feeding an PostgreSQL database. The
reluctance of the department to change at first presents an issue, but then you
realize there’s a way to integrate their data into the new event streaming
architecture.

By using a JDBC source connector you can directly send orientation
registrant information directy into a Kafka topic. Then the other departments
can set up their own consumer applications to recieve the data immediately
upon registration.



  Note

When you use Kafka Connect to bring in data from other sources, the
integration point is a Kafka topic. This means any application using a
KafkaConsumer (including Kafka Streams) can use the imported data.

Figure 5.1 shows how this integration between the database and Kafka works.
In this case, you’ll use Kafka Connect to monitor a database table and stream
updates into a Kafka topic.

Figure 5.1. Kafka Connect integrating a database table and a Kafka topic

Now that you’ve decided to use Kafka Connect to help you integrate the
orientation student signups with the new event streaming platform rolled out
at the university, let’s dive in with a simple working example in the next
section. After that we’ll go into more details on how connect works and the
main concepts.



5.2 Getting Started with Kafka Connect

Kafka Connect runs in two flavors: distributed and standalone mode. For
most production environments, running in distributed mode makes sense,
because you can take advantage of the parallelism and fault tolerance
available when you run multiple Connect instances. Standalone mode is good
for development on a local machine or your laptop.

  Note

For our purposes, instead of downloading Kafka Connect and running it
locally in your laptop, we’ll use a connect docker image. Remember, Kafka
Connect runs separately from a Kafka broker, so setting up a new docker-
compose file adding a connect service makes things simpler for development
and allows you focus on learning.

When setting up Kafka Connect there’s two levels of configuration you’ll
provide. One set of configurations are for the connect server (or worker) itself
and the other set is for the individual connector. I’ve just mentioned a new
term, connect worker, that we haven’t discussed yet but we’ll cover what a
worker is along with other core connect concepts in the next section.

Let’s look at the some of the key configuration parameters you’ll work with
for Kafka Connect:

key.converter—Class of the converter that controls serialization of the
key from Connect format to the format written to Kafka. In this case
you’ll use the built-in
org.apache.kafka.connect.storage.StringConverter. The value
specified here sets a default converter for connectors created on this
worker, but individual connectors can override this value.
value.converter—Class of the converter controlling serialization of
the value from Connect format to the format written to Kafka. For this
example, you’ll use the built-in
org.apache.kafka.connect.json.JsonConverter. Just like key
converter, this is a default setting and connectors can use a different



setting.
plugin.path—Tells Connect the location of plugins such as connectors
and converters, and their dependencies, on the worker.
group.id—The id used for all the consumers in the connect cluster, this
setting is used for source connectors only.

  Note

I’m discussing these configuration paramters here for completeness. You
won’t have set any of these configurations yourself as they are provided in
the docker-compose file under the connect service. The connect paramaters in
the file will take form similar to CONNECT_PLUGIN_PATH which will set the
plugin.path configuration. Additionally the docker-compose file will also
start a Postgres DB instance and will automatically populate a table with
values needed to run the example.

Figure 5.2. Connect coverter changes data format before it gets into Kafka or after it leaves
Kafka



I’d like to briefly explain what a converter is here. Connect uses a converter
to switch the form of the data that has been captured and produced by a
source connector into Kafka format or convert from Kafka format to an
expected format of an external system as in the case of a sink connector.
Since this setting can be changed for individual connectors, it allows for any
connector to work in any serialization format. For example one connector



could use Protobuf while another could use JSON.

Next, let’s take a look at some configuraton you’ll provide for a connector. In
this case we’re using a JDBC connector for our first example, so you’ll need
to provide the information needed for the connector to connect to the
database, like username and passwor and you’ll also need to specify how the
connector will determine which rows to import into Kafka. Let’s take a look
at few of the more important configs for the JDBC connector:

connector.class—Class of the connector.
connection.url—URL used to connect to the database.
mode—Method the JDBC source connector uses to detect changes.
timestamp.column.name—Name of the column tracked for detecting
changes.
topic.prefix—Connect writes each table to a topic named
topic.prefix+Table name.

Most of these configurations are straightforward, but we need to discuss two
of them—mode and timestamp.column.name—in a little more detail because
they have an active role in how the connector runs. The JDBC source
connector uses mode to detect which rows it needs to load.

For this example, you’ll use the timestamp setting for the mode, which relies
on column containing a timestamp, named in the timestamp.column.name
config. While it’s should be obvious an that insert sets the timestamp, we’ve
also added a trigger to the database docker image that refreshes the timestamp
with update statements. By using a timestamp, the connector will pull any
values from the database table whose timestamp is greater than the last one
from the previous import.

Another value for the mode could be incrementing which relies on column
with an auto-incrementing number, which would focus only in new inserts.
The JDBC connector provides several configuration items the connector will
use for determining which rows need to be imported. Under the covers, the
connector will issue a query to the database and the result of the query is
what get produced into Kafka. I’m not going to go into any more detail on the
JDBC connector in this chapter. It’s not that we’ve covered everything there
is to know, the information on the JDBC connector could fill an entire



chapter on its own. The more important point is to see that you need to
provide configurations for the individual connector, and most of them
provide a rich set to control the connector’s behavior.

Now let’s take a look at how you start an individual connector. It’s easily
achieved by using Connect’s provided REST API. Here’s a sample of what
you’ll use to launch a connector:

Listing 5.1. REST API call to start a connector

curl -i -X PUT http://localhost:8083/connectors/jdbc_source_connector_example/config \

     -H "Content-Type: application/json" \

     -d '{

            "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",

            "connection.url": "jdbc:postgresql://postgres:5432/postgres",

            "connection.user": "postgres",

            "connection.password": "postgres",

            "mode":"timestamp",

            "timestamp.column.name":"ts",

            "topic.prefix":"postgres_",

            "value.converter":"org.apache.kafka.connect.json.JsonConverter", #1

            "value.converter.schemas.enable": "false", #2

            "tasks.max":"1" #3

        }'

So this REST call will start the JDBC connector running. There’s a few
configurations I’d like to call your attention to here. At annotation one you
set the value.converter which will convert the incoming records from the
database into JSON format. But if you’ll look at annotation two you’ll see a
value.converter.schemas.enable configuration which is set to false, which
means the converter will not preserve the schmea coming from the connector
in the contents of the message.

Keep in mind when using a JSON converter the schema is attached to each
incoming record which can increase the size of it significantly. In this case,
since we are producing records into Kafka we can disable the inferred
schemas. But when conumsing from a Kafka topic to write to an external
system, depending on the connector, you must enable the schema infering so
Connect can understand the byte arrays that are stored in Kafk. A better
approach would be to use Schema Registry, then you could use either Avro,
Protobuf, or JSONSchema for the value converter. We covered schemas and



Schema Registry in chapter 3, so I won’t go over those details again here.

At annotation three you see a tasks.max setting and to fully explain this
configuration, let’s provide some additional context. So far we’ve learned
that you use Kafka Connect to pull data from external system into Kafka or to
push data from Kafka out to another application. You just reviewed the JSON
required to start a Connector, it does not do the pulling or pushing of data.
Instead the Connector instance is responsible for starting a number of tasks
whose job it is to move the data.

Earlier in the chapter we mentioned there are two types of a connectors -
SourceConnector and SinkConnector and they use two corresponding types
of tasks; the SourceTask and SinkTask. It’s the Connector’s main job to
generate task configurations. When running in distributed mode, the Connect
framework code will distribute and start them across the different workers in
the connect cluster. Each task instance will run in its own thread. Note that
setting the tasks.max doesn’t guarantee that’s the total number of tasks that
will run, the connector will determine to correct number it needs up to the
maximum number. At this point it would be helpful to look at an illustration
of the relationship between workers connectors and tasks:

Figure 5.3. Connect in standalone mode all tasks reside in one worker



Here we’re looking at Kafka Connect in standalone mode, there’s a single
worker which is a JVM process responible for running the connector(s) and
their task(s). Now let’s take a look at distributed mode:

Figure 5.4. Connect in distributed mode, tasks get spread around to other connector instances



As you can see here in distributed mode the tasks are spread out to other
workers in the connect cluster. Not only does distributed mode allow for
higher througput due to spreading out the load, it also provides the ability to
continue processing in the face of a connector failure. Let’s look at one more
diagram to illustrate what this means:

Figure 5.5. Connect in distributed mode provides fault tolerance



From looking at this illustration should a Kafka Connect worker stop running
the Connector and task instances on that worker will get assigned to other
workers in the cluster. So while standalone mode is great for prototyping and



getting up and running quickly with Kafka Connect, running in distributed
mode is recommended for production systems as it provides fault tolerance;
tasks from failed workers get assigned to the remaining workers in the
cluster. Note that in distributed mode you’ll need to issue a REST API call to
start a particular connector on each machine in the connect cluster.

Now let’s get back to our example. You have your connector running but
there are a few things you’d like to do differently. First of all, there are no
keys for the incoming records. Having no keys is a problem because records
for the same student will possibly end up on different partitions. Since Kafka
only guarantees ordering within a partition, multiple updates made by a
student could get processed out of order. Secondly the students input their
social security number. It’s important to limit the exposure of the ssn, so it
would be great to alter or mask it before it gets into Kafka.

Forturnatly, Connect offers a simple, but powerful solution to this with
transforms.

5.3 Applying Single Message Transforms

Simply put, single message transforms or SMTs provide a way to perform
lightwieght changes to records either before they get into Kafka or on their
way out to external systems, depending on if a source connector or a sink
connector is used. The key point about transforms is that the work done
should be simple, meaning they work on only one record at a time (no joins
or aggregations) and the use case should be applicable solely for connectors
and not custom producer or consumer applications. For anyhing more
complext it’s better to use Kafka Streams or ksqlDB as they are purpose built
for performing complex operations. Here’s an illustration depicting the role
of the transformation:

Figure 5.6. Connect coverter changes data format before it gets into Kafka or after it leaves
Kafka



As you can see here, the role of a SMT is to sit between the connector and the
coverter. For a source connector it will apply its operation the record before it
gets to the coverter and in the case of a sink connector it will perform the
transformation after the converter. In both cases, SMTs operate on data in the
same format, so that most SMTs will work equally well on a sink or a source
connector.

Connect provides several SMTs out of the box that tackle a wide range of use
cases. For example there are SMTs for fitering records, flattening nested
structures, or removing a field. I won’t list them all here but for the full list of
SMTs consult the Kafka Connect documentation -



https://kafka.apache.org/documentation.html#connect_included_transformation

For our purposes we’ll use three transforms ValueToKey, ExtractField, and
MaskField. Working with the provided SMTs is a matter of adding some
JSON configuration, no code required. Should you have a use-case where the
provided tranformations won’t provide what you need, you can of course
write your own transform. We’ll cover creating a custom SMT a little later in
the chapter.

Here’s the full JSON you’ll use to add the necessary transforms for your
connector:

Listing 5.2. The JSON transform configuration

 "transforms":"copyFieldToKey, extractKeyFromStruct, maskSsn", #1

 "transforms.copyFieldToKey.type":

       "org.apache.kafka.connect.transforms.ValueToKey", #2

 "transforms.copyFieldToKey.fields":"user_name", #3

 "transforms.extractKeyFromStruct.type":

        "org.apache.kafka.connect.transforms.ExtractField$Key", #4

 "transforms.extractKeyFromStruct.field":"user_name",  #5

 "transforms.maskSsn.type":

        "org.apache.kafka.connect.transforms.MaskField$Value", #6

 "transforms.maskSsn.fields":"ssn",   #7

 "transforms.maskSsn.replacement":"xxx-xx-xxxx" #8

Most of the JSON for the transform configuration should be straight forward.
There’s a comma separated list of names, each one representing a single
transform.

  Tip

The order of names in the transforms entry is not arbitrary. They are in order
of how the connector will apply them, so it’s importanc to consider how each
transform will change the data going through the transformation chain and
how it will affect the final outcome.

Then for each name in the list you provide the class of the transform, then the
field that it will apply to. But there is one thing I’d like to point out that might



not be readily apparent. With the copyFieldToKey transform you’ve indicated
that you want to use the user_name column for the key of each resulting
Kafka record. But the result produces a single field in STRUCT that looks like
this:

Listing 5.3. Struct

Struct {"user_name" : "artv"}

But what you realy want is the value of the struct field user_name for the key,
so you apply the ExtractField transform as well. In the configs you need to
specify the transform should apply the extraction on the key like this
ExtractField$Key and Connect applies the second transform and the key
ends up with the raw single value applied to the key for the incoming record.

I’d like to point out something here about the transforms that could go
unnoticed. You can chain mulitple transforms together to operate on the same
field, this is demonstrated in this example here by first copying a field to the
key, then extracting a value from the intermediate result of the field copy
operation. But there is a balance you’ll need to strike here, if you find
yourself building a transform chain the starts to go beyond 2, it might be
good to consider using Kafka Streams to perform the transformational work
as it will be more efficient.

The final transform you utilize is MaskField, which you’ll apply to the field
containing the ssn of the student. Again you’ll see in the configuration how
you specifed you want to apply the masking the value with the
MaskField$Value setting. In this case you specify the replacement for the ssn
as a string of x characters for each number resulting a value of xxx-xx-xxxx.
With the MaskField transform you also have the option of not specifying a
specific replacement and it will use an empty value based on the type of the
field it’s replacing - an empty string for string field or a 0 for numerical ones.

Now you’ve completed a fully configured connector that will poll the
database for changes or updates and import them into Kafka, making your
relational database part of your event streaming platform!



  Note

We’ve talked about the JDBC Connctor in this section. There are a few
corner cases where the JDBC connector won’t get the latest changes into
Kafka. I won’t go into those here, but I would reccomend taking a look at the
Debezium Connctor for integration relational databases with Apache Kafka
(https://debezium.io/documentation/reference/stable/connectors/index.html).
Instead of using an incrementing value or timestamp field, debezium uses the
database changelog to capture changes that need to go into Kafka.

To run the example we just detailed in this section consult the README file
in the chapter_5 directory of the source code for this book. There’s also a
sink connector as part of the example, but we won’t cover it here, as you
deploy it in the same way, provide some JSON configurations and issue a
REST call to the connect worker.

So far you’ve set up a source connector, but you’ll also want to send events
from Kafka into an external system. To accomplish that you’ll use a sink
connector, specifically an elastic search sink connector.

5.3.1 Adding a Sink Connector

One additional feature that you thought to add was the ability for incoming
students to search for a potential roomate based in the input data gathered for
the orientation process. The idea being that when students come for
oritentation part of the process can be to enter a few key words and get hits
from other students that have the same preferences.

When you originally pitched the idea everyone was enthusiastic, but
questions on how to get the data seemed too difficult and the prospect of
setting up a new pipeline for gathering information was not well receieved, so
the idea was put on hold. But now with the adoption of Kafka and Connect
for importing the incoming student information, exposing a search
application with Elasitc Search (https://www.elastic.co/) is as simple now as
providing a sink connector.

Fortunately, there’s already an elastic search sink connector, so all you need



to do is install the jar files to your running Connect cluster and you’re all set.
So getting started with the elastic sink connector is simply a matter of making
a REST API call to get the connector up and running:

Listing 5.4. REST Call to install Elastic Connector

$ curl -i -X PUT localhost:8083/connectors/student-info-elasticsearch-connector/config \

    -H "Content-Type: application/json" \

        -d ‘{

                        "connector.class": "io.confluent.connect.elasticsearch.ElasticsearchSinkConnector",

                        "connection.url": "http://elasticsearch:9200",

                        "tasks.max": "1",

                        "topics": "postgres_orientation_students",  #1

                        "type.name": "_doc",

                        "value.converter": "org.apache.kafka.connect.json.JsonConverter",

                        "value.converter.schemas.enable": "false",

                        "schema.ignore": "true",

                        "key.ignore": "false",

                    "errors.tolerance":"all",  #2

                    "errors.deadletterqueue.topic.name":"orientation_student_dlq", #3

                    "errors.deadletterqueue.context.headers.enable": "true", #4

            "errors.deadletterqueue.topic.replication.factor": "1" #5

            }’

For the most part, the configurations here are similar to what you saw for the
JDBC connector with the exception for the configurations that are specific for
the connector. At annotation one, we see the name of topic the sink connector
will use to read records and write them to elastic search.

But there are three additional configurations, the ones starting with errors,
that we haven’t seen before and we should discuss them now. Since a sink
connector is attempting to write event records to an external system there’s a
good possibility for errors. After all to work with distributed applications is to
embrace failure and provide the mechanisms for how you want your
application to respond to them.

  Note

Annotation 5 in the configuration for the Elastic sink connector sets to the
replication factor for the DLQ topic. In a single node cluster, such as our



Docker development environment you’ll want to set this to 1, otherwise the
connector won’t start since there aren’t enough brokers for the default
replication factor of 3.

The errors.tolerance configuration at annotation two specifies how the
connector will responde when it gets an error. Here you’ve used a setting of
all meaning that regardless of errors during conversion and transformation,
and regardless of the number of retriable or data-dependent errors
encountered while writing records to the sink, the connector will keep
running. Then you’d need to go review the logs for that specific connector to
determine what went wrong and how to procede. While the all setting allows
to connector to continue operating, you still want to know when a record
fails. The configruation at annotation three creates a dead letter queue or
DLQ, where Connect can set aside the records it can’t deliver.

But with enabling a DLQ topic Connect only stores the failed record itself.
To get the reason why the failure occured you’ll need to enable storing some
additional information in the record header which you’ve done at annoation
four. We covered record headers previously so you can refer back to chapter
four to review information on reading with record headers.

As with anything in life, there are trade-offs to consider with using a DLQ.
While a setting of none for errors.tolerance and shutting down on error
sounds harsh, if this were a production system, you’d probably find out very
fast that something was amiss and needed to be fixed. Contrast this with the
setting of all which will continue on regardless of any errors the connector
may encounter, it’s critical to track any errors because to run indefinitely with
an error condition could arguably be worse than shutting down. In other
words "if a tree falls in a forest and no one is there to hear it, does it make a
sound?", if errors arrive in your DLQ, but no one is looking at it, it’s the same
as no errors ocurring at all.

So with enabling a DLQ, you’ll want to set up some sort of monitoring (i.e. a
KafkaConsumer) that can alert on any errors and possibly take action like
shutting down the problematic connector in the face of continuous problems.
The source code for the book will have a basic implmentation demonstrating
this type of functionality.



So now you’ve learned about using a source Connector for bringing event
data into Kafka and sink Connector for exporting from Kafka to an external
system. While this is a simple workflow, don’t think this example is
representative of the full usefulness of Kafka Connect. First of all, there could
be several sink connectors writing the imported records out to external
systems, not just one, and increasing the leverage of Kafka for creating an
event streaming platorm, by effectively bringing in all external system into
one central "data flow".

In practice you can have several different source connectors bringing data
and more than likely there would be more processing of those incoming
records, and not a simple data pipe demonstrated in this chapter.

For example consider that there could be any number of client applications
relying on the topic with data a source connector provides. Each application
could produce its own unique results to another topic. Then there could be
any number of sink connectors producing the updated records back out
external systems in your architecture.

As you can see from the this illustration, Connect plays an integral part in
gluing together external data applications into the Kafka event streaming
platform. By using Connect, essentially any application with a connector can
plug into it and leverage Kafka as the central hub for all incoming data.

But what about if you have a source or a sink candidate that doesn’t have an
existing connector. While there are literally hundreds of existing connectors
today, it’s possible that the one you need might not exist. But there’s good
news, there’s a Connect API that makes it possible for you to implement your
own connector and that’s what you’ll do in the next section.

5.4 Building and deploying your own Connector

In this section we’re going to walk through the steps you’ll take to implement
your own connector. Let’s say you work for a fintech firm and along with
providing institutional-grade financial data to investors and investment firms,
your company is branching out an wants provide analysys based on a
subscription model.



In order to offer the analysis data, the company as stood up a few different
departments that will ingest real-time stock ticker data. To get a full feed of
live data is not cheap and the cost for each department to have their own feed
would be prohibitively expensive. But you realize that if you created a source
connector you could consume the feed once and every department could
standup their own client application to consume the feed in near-realtime
from your Kafka cluster. So with your idea firmly in mind, let’s move on to
implementing your own connector.

5.4.1 Implementing a connctor

To develop your own connector your going to work the following interfaces
Connector and Task. Specifically you’re going the extend the abstract class
SourceConnector which itself extends the Connector class. There are several
abstract methods that you’ll need to implement, but we’re not going to go
over each one, just the most significant ones. You can consult the source code
from the book to look at the full implementation.

Let’s start with configuration. The Connector class itself doesn’t do too much
when it comes to moving data, it’s main responsibilty is to make sure each
Task instance is configured properly, as it’s the Task that does the work of
getting data either into or out of Kafka. So you’ll create a
StockTickerSourceConnectorConfig class that you’ll instantiate directly
inside your connector. The configuration class contains a ConfigDef instance
to specify the expected configurations:

Listing 5.5. Setting up a ConfigDef instance

public class StockTickerSourceConnector extends SourceConnector {

private static final ConfigDef CONFIG_DEF = new ConfigDef() #1

            .define(API_URL_CONFIG,         #2

                   ConfigDef.Type.STRING,

                   ConfigDef.Importance.HIGH,

                   "URL for the desired API call")

            .define(TOPIC_CONFIG,    #3

                   ConfigDef.Type.STRING,

                   ConfigDef.Importance.HIGH,

                   "The topic to publish data to")

... followed by the rest of the configurations



}

Here you can see we’re adding the configurations using a fluent style where
we chain the method calls define one after another. Note that there more
configurations we’re adding but it’s not necessary to show all of them here, I
think you get the point of how they all get added. By building the ConfigDef
the connector will "know" what configurations to expect. The
ConfigDef.define method allows you to provide a default value. So if an
expected configuration isn’t provided, the default value gets populated in its
place. But if you don’t provide a default value for any configuration, when
starting the connector a ConfigException is thrown shutting the connector
down. The next part of the connector we’ll want to take a look at is how it
determines the configuration for each Task instance.

Listing 5.6. Configuring the tasks

@Override

public List<Map<String, String>> taskConfigs(int maxTasks) {

 List<Map<String, String>> taskConfigs = new ArrayList<>();

 List<String> symbols = monitorThread.symbols(); #1

 int numTasks = Math.min(symbols.size(), maxTasks);

 List<List<String>> groupedSymbols =

       ConnectorUtils.groupPartitions(symbols, numTasks); #2

 for (List<String> symbolGroup : groupedSymbols) {

    Map<String, String> taskConfig = new HashMap<>(); #3

    taskConfig.put(TOPIC_CONFIG, topic);

    taskConfig.put(API_URL_CONFIG, apiUrl);

    taskConfig.put(TOKEN_CONFIG, token);

    taskConfig.put(TASK_BATCH_SIZE_CONFIG, Integer.toString(batchSize));

    taskConfig.put(TICKER_SYMBOL_CONFIG, String.join(",", symbolGroup)); 

    taskConfigs.add(taskConfig);

 }

return taskConfigs;

}

You’ll notice at annotation one, you’re getting the list of symbols from an
instance variable named monitorThread. I’d like to hold talking about this
field until we get to the monitoring section later in this chapter. For now it’s
enough to know this method returns the list of symbols need to run the ticker.

If you recall from earlier in the chapter, one of the configurations you set for
the connector is max.tasks. This configuration determines the maximum



number of tasks the connector may spin up to move data. Our Stock API
service can take a comma separated list of up to 100 ticker symbols to
retrieve information about those companies. To make sure work is evenly
distributed across all tasks, you’ll want to partition the ticker symbols into
separate lists.

For example if you have specified 2 as the maximum number of tasks and
there are 10 ticker symbols, the connector will partition them into two lists of
5 ticker symbols each. This grouping of ticker symbols occurs at annotation 1
using the ConnectionUtils.groupPartitions utility method. That’s about
as much that we want to cover for the connector implementation, so we’ll
move on to the next section implmenting the task.

Since you’re creating a SourceConnector you’ll extend the abstract class
SourceTask to build your task implmentation, StockTickerSourceTask.
There’s a handful of method on the class you’ll need to override, but we’re
going to focus on the poll() method since that is at the heart of what a
SourceTask does, get data from an external source and load it into Kafka.

Let’s review the behavior of a SourceTask at a high level. Once you start a
connector it will configure the correct number of tasks and start them in their
own thread. Once the thread is executing the SourceTask.poll() is called
periodically to retrieve records from the configured external application.
There’s no overall configuration on how often the poll method is executed.
While you don’t have explicit controll how often the poll method of your
task is called, you can add some throttling inside your task implementation to
wait a desired amount of time before executing the logic of your SourceTask.

There’s a basic implemtation of throttling in the our SourceTask example.
Why would you want to add throttling to the source task exectution? In our
case we’re going to issue a request to a HTTP endpoint for a stock service
API. Many of the available API’s have limits on how often you can hit the
service or give a total number requests per day. So by adding throttling you
can make sure the calls to the API are spread out in way that stays within the
plan limits.

Also, you’ll want to handle the case when there’s no records to return. It
would be a good idea to wait a small amount of time, 1-2 seconds for



example, to allow for the source to have something new to return. It’s
important however to return control to the calling thread by returning null so
the worker can respond to requests to pause or shutdown.

Now let’s take a look at the action of the StockTickerSourceTask.poll
method. To make sure we fully understand what is going on with the polling
logic, we’re going to view the code in sections.

Listing 5.7. Start of poll method for the source task

public List<SourceRecord> poll() throws InterruptedException {

    final long nextUpdate = lastUpdate.get() + timeBetweenPoll; #1

    final long now = sourceTime.milliseconds();     #2

    final long sleepMs = nextUpdate - now; #3

    if (sleepMs > 0) {

        LOG.trace("Waiting {} ms to poll API feed next", sleepMs);

        sourceTime.sleep(sleepMs);

    }

At the very top of the method, we calculate what time our next API call
should take place, remember we don’t want to overrun the limit set for how
many calls we can make to the service. If the current time is less that the time
of our last call plus the interval we want to have in between calls, we’ll have
the polling thread sleep for that amount of time.

Now once the wait time passes, the next part of the method that executes is
the core logic of retrieving the stock results:

Listing 5.8. Core polling logic

// Details left out for clarity

HttpRequest request = HttpRequest.newBuilder()  #1

                .uri(uri)

                .GET()

                .headers("Content-Type", "text/plain;charset=UTF-8")

                .build();

HttpResponse<String> response;

try {

    response = httpClient.send(request,



                  HttpResponse.BodyHandlers.ofString()); #2

    AtomicLong counter = new AtomicLong(0);

    JsonNode apiResult = objectMapper.readTree(response.body()); #3

    ArrayNode tickerResults = (ArrayNode) apiResult.get(resultNode);

    LOG.debug("Retrieved {} records", tickerResults.size());

    Stream<JsonNode> stockRecordStream =

              StreamSupport.stream(tickerResults.spliterator(), false);

    List<SourceRecord> sourceRecords = stockRecordStream.map(entry -> {  

        Map<String, String> sourcePartition =

              Collections.singletonMap("API", apiUrl);

        Map<String, Long> sourceOffset =

              Collections.singletonMap("index", counter.getAndIncrement());

       Schema schema = getValueSchema(entry);  #5

       Map<String, Object> resultsMap = toMap(entry); #6

       return new SourceRecord(sourcePartition,

                               sourceOffset,

                               topic,

                               null,

                               schema,

                               toStruct(schema, resultsMap)); #7

    }).toList();

    lastUpdate.set(sourceTime.milliseconds()); #8

   return sourceRecords; #9

}

The logic for the polling is pretty clear. You create a HTTPRequest object and
then submit it to the ticker API endpoint, then you read the string repsponse
body that API endpoint returns. The results are in JSON format, with the
ticker symbol information in a nested array. You extract the array and flatten
the results, mapping each one to a SourceRecord so that each entry in the
array will become a record sent to Kafka.

There’s one part of this conversion that we need to cover here. The
SourceRecord constructor accepts two parameters a source partition and a
source offset, both represented by a Map instance. The notion of a source
partition and offset might seem a bit out of context considering the source for
a SourceConnector will not be Kafka. But the concept of a source partition
indicates a general location description of where the connector sources the
data - a database table name, file name or in our case here the API url. You’ll



want to take note of annotation 5, we build the schema for the record returned
from the ticker API call. Then at annotation six you convert the JSON record
into a Map. We need to do these two steps to create a Struct used for the
value of the SourceRecord. Additionally, we pass in the generated schema to
the SourceRecord instance which may end up in the Kafka topic if you’ve
configured the connector to include the schema.

With that gereralized definition of a source partition, the source offset is the
position of the individual record in the retreived result. If you remember in
Kafka a consumer commits the offset of the last fully consumed record so if
it shuts down for any reason, it can resume operations from that committed
offset.

Earlier in the section, your custom connector instance used a
monitoringThread variable to get the list of ticker symbols to track. In the
next section I’ll explain what this variable is and why the connector is using
it.

5.4.2 Making your connector dynamic with a monitoring
thread

In this example connector it would be reasonable to assume the list of ticker
symbols is static. But what if you wanted or needed to change them? Of
course you can use the Connect REST API to update the configurations but
that means you have to keep track of any changes and manually update the
connector. But you can provide a monitoring thread in conjuction with your
custom connector to keep track of any changes and update the connector
tasks automatically.

To be clear, a monitoring thread is not something unique to the Connector,
you’ll implement a class that extends a regular java.lang.Thread class.
Conceptually, you’ll start the thread when your connector starts and it will
contain the logic needed to check for any changes and reconfigure the
connector tasks if needed.

Imagine you have a separate microservice that handles which information
needs to be included in the source connector configuration. The micro-service



generates a file containing a comma separated list of the ticker symbols. So
what you’ll need is for your monitoring thread to periodically read in the file
and compare its contents against the current list of symbols. If there’s a
change, then it will trigger a reconfiguration of the connector tasks. A better
example of why you’d want to use a monitoring thread is the JDBC
Connector. You can use the JDBC Connector to import an entire relational
database, possibly consisting of many tables. In any organization a relational
database is not a static resource, it will change with some frequency. So
you’ll want to automatically pick up those changes to make sure the
connector is importing the latest data into Kafka.

Let’s start the monitoring thread analysis by looking that class declaraton and
constructor:

Listing 5.9. Class declaration and constructuor of monitoring thread

public StockTickerSourceConnectorMonitorThread(

  final ConnectorContext connectorContext,  #1

  final int monitorThreadCheckInterval, #2

  final String symbolUpdatesPath) {  #3

        this.connectorContext = connectorContext;

        this.monitorThreadCheckInterval = monitorThreadCheckInterval;

        this.symbolUpdatePath = Paths.get(symbolUpdatesPath);

    }

The constructor parameters are fairly self-explanatory, but the
ConnectorContext deserves a quick discussion. Any class exteding the
abstract Connector class will have access to the ConnectorContext, so you
don’t need to concerned about where it comes from. It’s used to interact with
the connect runtime, requesting task reconfiguration when the source changes
for example.

Now for the behavior of the monitoring thread, you’ll override the
Thread.run() method and provide the logic you want to execute should there
be any relevant changes:

Listing 5.10. Overridden run method of the StockTickerSourceConnectorMonitorThread class

public void run() {

 while (shutDownLatch.getCount() > 0) {  #1



   try {

        if (updatedSymbols()) { #2

           connectorContext.requestTaskReconfiguration(); #3

        }

 boolean isShutdown = shutDownLatch.await(monitorThreadCheckInterval,  #4

                                      TimeUnit.MILLISECONDS);

 if (isShutdown) { #5

      return;

 }

  ....

  // Details left out for clarity

All that the StockTickerSourceConnectorMonitorThread does is check if
the stock symbols have changed and if they have, request a configuration
change for the connector task(s). After checking for changes, the
shutDownLatch waits the designated time specified by the
monitorThreadCheckInterval instance variable set when the connector
created the thread. If the shutDownLatch counted down while waiting, then
the isShutdow variable returns true and the monitoring thread stops running,
otherwise it continues to monitor for changes.

  Note

The CountDownLatch is a class from the java.util.concurrent package and
is a synchronization tool that gives you the ability to have one or more
threads wait until a certain condition is reached. I won’t go into any more
details here but consult the Javadoc for a full explaination -
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CountDownLatch.html

To conclude the discussion on the monitoring thread, let’s quickly review
how it determines if there are any changes.

Listing 5.11. Logic used for detecting changes to symbols

//Details omitted for clarity

 List<String> maybeNewSymbols = symbols(); #1

 boolean foundNewSymbols = false;

 if (!Objects.equals(maybeNewSymbols, this.tickerSymbols)) { #2



     tickerSymbols = new ArrayList<>(maybeNewSymbols); #3

     foundNewSymbols = true;

}

return foundNewSymbols;

To determine that there are changes, the symbols() method reads a file and
returns a List<String> representing the comma separated list of symbols
contained in the file. If the retrieved list contents differs from the current one,
we update the instance list and set the foundNewSymbols boolean to true,
which will triggers a reconfiguration when the method returns.

So this wraps up our coverage of the custom SourceConnector, the code
presented here isn’t production ready, but it’s meant to give you a good
understanding of how you would implement your own connector. There are
instructions in the book’s source code that describe how to run this custom
connector locally with a docker image.

The API returns a rich set of fields for the stock ticker symbol, but you may
only interested in storing a subset of those fields into Kafka. Of course you
could extract the fields of interest right at the source when the connector task
retrieves the API results, but if you switched API services that had a different
JSON structor it would mean you’d need to change the logic of your
connector. A better approach would be to use a transform that could extract
the exact fields you need before the records make it to Kafka. For that you’ll
need a custom transformation that can take artbitrary fields from a JSON
object and return one with just those fields. That’s exactly what we are going
to cover in the next section, create a custom transformation.

5.4.3 Creatign a custom transformation

Although Kafka Connect provides serveral transformations out of the box,
given the unique structure of data created by deployed production systems,
the idea that those transforms will handle every case isn’t always possible.
While the need for a custom connector is less likely, due to the number of
connectors availble for popular external systems, it’s more likely that you’ll
need to write your own transformation.

The stock API feed we used for our custom Connector produces a result



containing 70+ fields of different metrics for each stock symbol. While each
one is useful, for our purposes we only want to keep a fraction of those, 5-6
at most. So you’re going to create a transformation that keep only the fields
you specify via a configured comma separated list of field names.

To complete the transformation you’re going to implement the
Transformation interface. There are a few methods on the interface you’ll
need to implement, but we’re going to focus on one in particular the apply
method as that’s where all the action of dropping the fields you’re not
interested in happens.

But there’s a bit of a twist with implementing a Tranformation object. If you
remember from earlier in the chapter, when you launch a connector, one of
the configurations you set specifies if you want to include the schema for
each record. So you’ll need to take that into account when implementing your
custom SMT. We’ll see how this works in the upcoming section.
Additionally, you’ll need to account for the fact that a user may want to apply
this transformation to either the key or the value, and you’ll see how we
handle that as well.

Let’s get into the implementation for the Transformation now:

Listing 5.12. Implementation of the custom transformation

// Details left out for clarity

public abstract class MultiFieldExtract<R extends ConnectRecord<R>>  

                                       implements Transformation<R> {

 @Override

public R apply(R connectRecord) {     #2

  if (operatingValue(connectRecord) == null) {  #3

    return connectRecord;

  } else if (operatingSchema(connectRecord) == null) { #4

    return applySchemaless(connectRecord);

  } else {

    return applyWithSchema(connectRecord); #5

  }

}

The first thing you’ll probably notice about our Transformation



implementation is that it’s an abstract class. If you go back to the earlier
part of this chapter you’ll remember when we configured SMTs you needed
to specify that the transform was either for the key or the value with
configuration like this MaskField$Value if you recall in Java the $ indicates
an inner class. So what’s happening is you declare the tranformation class as
abstract since it will have by convention three abstract methods
operatingSchema, operatingValue, and newRecord. You’ll implement these
methods with two inner classes Key and Value which represent the
transformation for the respective part of the connect record. We won’t go into
any more details here as so we can continue moving forward and discuss the
action happening in the apply method.

At annotation three, you’ll see the simplest case the underlying value for the
connect record is null. Remember in Kafka it’s acceptable to have a null key
or value. Keys are optional and with compacted topics a null value represents
a tombstone and indicates to the log cleaner to delete the record from the
topic. For the rest of this section I’m going to assume that we’re only
working with values only.

Next at annotation four, we check if the record has an embedded schema.
Again earlier in the chapter we discussed the
value.converter.schemas.enable configuration which, if enabled, embeds
the schema for each record coming through the connector. If this branch
evaluates to true we’ll use the applySchemaless method to complete the
tranformation:

Listing 5.13. Transforming without a schema

 private R applySchemaless(R connectRecord) {

        final Map<String, Object> originalRecord =

                requireMap(operatingValue(connectRecord), PURPOSE);

        final Map<String, Object> newRecord = new LinkedHashMap<>();

        List<Map.Entry<String,Object>> filteredEntryList =

      originalRecord.entrySet().stream()

      .filter(entry -> fieldNamesToExtract.contains(entry.getKey()))

      .toList();

        filteredEntryList.forEach(entry -> newRecord.put(entry.getKey(),

                                                 entry.getValue()));

        return newRecord(connectRecord, null, newRecord);



    }

Since there’s no schema we can create a Map with String keys (for the field
name) and Obejct for the values for the current record. Then you create an
empty map for the new record and then filter the existing records by checking
if the list of configured field names contains it. If is in the list the key and
value are place in the map representing the new record.

If the record does have a schema, we follow a very similar process, but we
first have to adjust the schema to only contian the fields we’re intrested in
keeping:

Listing 5.14. Transforming with a schema

private R applyWithSchema(R connectRecord) {

final Struct value =

       requireStruct(operatingValue(connectRecord), PURPOSE);

Schema updatedSchema = schemaUpdateCache.get(value.schema());

if(updatedSchema == null) {

    updatedSchema = makeUpdatedSchema(value.schema());

    schemaUpdateCache.put(value.schema(), updatedSchema);

}

final Struct updatedValue = new Struct(updatedSchema);

updatedValue.schema().fields()

.forEach(field -> updatedValue.put(field.name(),

                                  value.get(field.name())));

return newRecord(connectRecord, updatedSchema, updatedValue);

}

Here with the schema-record combo we first need to get a Struct which is
very similar to the HashMap in the schemaless version, but it contains all the
type information for the fields in the record. First we check if we’ve already
created an updated schema, if not, we create it and store it in a cache. Once
we’ve created the updated schema there’s no need to create another one since
the structure for all records will be the same. Then we simply iterate over the
field names of our updated schema using each one to extract the value from
the old record.

You now know how to implement your own custom connect



Transformation. I’ve not covered all the details here, so be sure to consult
the source code in bbejeck.chapter_5.transformer.MultiFieldExtract
for all the details.

I’d like close this chapter on Kafka Connect out by saying the custom
Connector and Transformation you’ve created here aren’t necesarily meant
for production use, they are simply meant to be teaching tools on how you
can go about creating custom variations of those two classes when the ones
provided by Kafka Connect won’t fit your needs.

5.5 Summary

Kafka Connect is the lynch pin that will move data from an external
system into Kafka and it can move data from Kafka out into an external
system as well. This ability move data in and out of Kafka is critical for
getting existing applications outside of Kafka involved in an event
streaming platform.
Using an existing connector doesn’t require any code, you just need to
upload some JSON configurations to get it up and running. There are
literally hundreds of existing connectors, so chances are there’s one
already developed that can you use out of the box.
The connect framework also provides something called a single message
transform or SMT that can apply lightweight changes to incoming or
outgoing records.
If the exisiting connectors or transformations don’t do what you need
them to do, you can implement your own.



6 Developing Kafka Streams
This chapter covers

Introducing the Kafka Streams API
Building our first Kafka Streams application
Working with customer data; creating more complex applications
Splitting, merging and branching streams oh my!

Simply stated, a Kafka Streams application is a graph of processing nodes
that transforms event data as it streams through each node. Let’s take a look
at an illustration of what this means:

Figure 6.1. Kafka Streams is a graph with a source node, any number of processing nodes and a
sink node





This illustration represents the generic structure of most Kafka Streams
applications. There is a source node that consumes event records from a
Kafka broker. Then there are any number of processing nodes, each
performing a distinct task and finally a sink node used to write the
transformed records back out to Kafka. In a previous chapter we discussed
how to use the Kafka clients for producing and consuming records with
Kafka. Much of what you learned in that chapter applies for Kafka Streams,
because at it’s heart, Kafka Streams is an abstraction over the producers and
consumers, leaving you free to focus on your stream processing
requirements.

  Important

While Kafka Streams is the native stream processing library for Apache
Kafka ®, it does not run inside the cluster or brokers, but connects as a client
application.

In this chapter, you’ll learn how to build such a graph that makes up a stream
processing application with Kafka Streams.

6.1 The Streams DSL

The Kafka Streams DSL is the high-level API that enables you to build Kafka
Streams applications quickly. This API is very well thought out, with
methods to handle most stream-processing needs out of the box, so you can
create a sophisticated stream-processing program without much effort. At the
heart of the high-level API is the KStream object, which represents the
streaming key/value pair records.

Most of the methods in the Kafka Streams DSL return a reference to a
KStream object, allowing for a fluent interface style of programming.
Additionally, a good percentage of the KStream methods accept types
consisting of single-method interfaces allowing for the use of lambda
expressions. Taking these factors into account, you can imagine the
simplicity and ease with which you can build a Kafka Streams program.



There’s also a lower-level API, the Processor API, which isn’t as succinct as
the Kafka Streams DSL but allows for more control. We’ll cover the
Processor API in a later chapter. With that introduction out of the way, let’s
dive into the requisite Hello World program for Kafka Streams.

6.2 Hello World for Kafka Streams

For the first Kafka Streams example, we’ll build something fun that will get
off the ground quickly so you can see how Kafka Streams works; a toy
application that takes incoming messages and converts them to uppercase
characters, effectively yelling at anyone who reads the message. We’ll call
this the Yelling App.

Before diving into the code, let’s take a look at the processing topology
you’ll assemble for this application:

Figure 6.2. Topology of the Yelling App





As you can see, it’s a simple processing graph—so simple that it resembles a
linked list of nodes more than the typical tree-like structure of a graph. But
there’s enough here to give you strong clues about what to expect in the code.
There will be a source node, a processor node transforming incoming text to
uppercase, and a sink processor writing results out to a topic.

This is a trivial example, but the code shown here is representative of what
you’ll see in other Kafka Streams programs. In most of the examples, you’ll
see a similar pattern:

1. Define the configuration items.
2. Create Serde instances, either custom or predefined, used in

deserialization/serializtion of records.
3. Build the processor topology.
4. Create and start the Kafka Streams.

When we get into the more advanced examples, the principal difference will
be in the complexity of the processor topology. With all this in mind, it’s
time to build your first application.

6.2.1 Creating the topology for the Yelling App

The first step to creating any Kafka Streams application is to create a source
node and that’s exactly what you’re going to do here. The source node is the
root of the topology and fowards thge consumed records into application.
Figure 6.3 highlights the source node in the graph.

Figure 6.3. Creating the source node of the Yelling App



The following line of code creates the source, or parent, node of the graph.

Listing 6.1. Defining the source for the stream



KStream<String, String> simpleFirstStream = builder.stream("src-topic",

Consumed.with(Serdes.String(), Serdes.String()));

The simpleFirstStream instance is set to consume messages from the src-
topic topic. In addition to specifying the topic name, you can add a Consumed
object that Kafka Streams uses to configure optional parameters for a source
node. In this example you’ve provided Serde instances, the first for the key
and the second one for the value. A Serde is a wrapper object that contains a
serializer and deserializer for a given type.

If you remember from our dicussion on consumer clients in a previous
chapter, the broker stores and forwards records in byte array format. For
Kafka Streams to perform any work, it needs to deserialize the bytes into
concrete objects. Here both Serde objects are for strings, since that’s the type
of both the key and the value. Kafka Streams will use the Serde to deserialize
the key and value, separately, into string objects. We’ll explain Serdes in
more detail soon. You can also use the Consumed class to configure a
TimestampExtractor, the offset reset for the source node, and provide a
name. We’ll cover the TimestampExtractor and providing names in later
sections and since we covered offset resets in a previous chapter, I won’t
cover them again here.

And that is how to create a KStream to read from a Kafka topic. But a single
topic is not our only choice. Let’s take a quick look at some other options.
Let’s say that there are several topics you’d like to like to "yell at". In that
case you can subscribe to all of them at one time by using a
Collection<String> to specify all the topic names as shown here:

Listing 6.2. Creating the Yelling Application with multiple topics as the source

KStream<String, String> simpleFirstStream =

  builder.stream(List.of("topicA", "topicB", "topicC"),

        Consumed.with(Serdes.String(), Serdes.String()))

Typically you’d use this approach when you want to apply the same
processing to multiple topics at the same time. But what if you have long list
of similarly named topics, do you have to write them all out? The answer is
no! You can use a regular expresion to subscribe to any topic that matches
the pattern:



Listing 6.3. Using a regular expression to subscribe to topics in the Yelling Application

KStream<String, String> simpleFirstStream =

   buider.source(Pattern.compile("topic[A-C]"),

      Consumed.with(Serdes.String(), Serdes.String()))

Using a regular expression for subscribing to topics is particulary handy
when your organization uses a common naming pattern for topics related to
their business function. You just have to know the naming pattern and you
can subscribe to all of them concisely. Additionally as topics are created or
deleted your subscription will automatically update to reflect the changes in
the topics.

When subscribing to mulitple topics, there are a few caveats to keep in mind.
The keys and values from all subscribed topics must be the same type, for
example you can’t combine topics where one topic contains Integer keys
and another has String keys. Also, if they all aren’t partitioned the same, it’s
up to you to repartition the data before performing any key based operation
like aggregations. We’ll cover repartitioning in the next chapter. Finally,
there’s no ordering guarantees of the incoming records.

You now have a source node for your application, but you need to attach a
processing node to make use of the data, as shown in figure 6.4.

Figure 6.4. Adding the uppercase processor to the Yelling App



Listing 6.4. Mapping incoming text to uppercase

KStream<String, String> upperCasedStream =

  simpleFirstStream.mapValues(value -> value.toUpperCase());



In the introduction to this chapter I mentioned that a Kafka Streams
application is a graph of processing nodes, a directed acyclic graph or DAG
to be precise.

You build the graph one processor at a time. With each method call, you
establish a parent-child relationship between the nodes of the graph. The
parent-child relationship in Kafka Streams establishes the direction for the
flow of data, parent nodes forward records to their children. A parent node
can have multiple children, but a child node will only have one parent.

So looking at the code example here, by executing
simpleFirstStream.mapValues , you’re creating a new processing node
whose inputs are the records consumed in the source node. So the source
node is the "parent" and it forwards records to its "child", the processing node
returned from the mapValues operation.

  Note

As you tell from the name mapValues only affects the value of the key-value
pair, but the key of the original record is still forwared along.

The mapValues() method takes an instance of the ValueMapper<V, V1>
interface. The ValueMapper interface defines only one method,
ValueMapper.apply, making it an ideal candidate for using a lambda
expression, which is exactly what you’ve done here with value →
value.toUpperCase().

  Note

Many tutorials are available for lambda expressions and method references.
Good starting points can be found in Oracle’s Java documentation: “Lambda
Expressions” (mng.bz/J0Xm) and “Method References” (mng.bz/BaDW).

So far, your Kafka Streams application is consuming records and
transforming them to uppercase. The final step is to add a sink processor that
writes the results out to a topic. Figure 6.5 shows where you are in the



construction of the topology.

Figure 6.5. Adding a processor for writing the Yelling App results

The following code line adds the last processor in the graph.



Listing 6.5. Creating a sink node

upperCasedStream.to("out-topic",

               Produced.with(Serdes.String(), Serdes.String()));

The KStream.to method creates a processing node that writes the final
transformed records to a Kafka topic. It is a child of the upperCasedStream,
so it receives all of its inputs directly from the results of the mapValues
operation.

Again, you provide Serde instances, this time for serializing records written
to a Kafka topic. But in this case, you use a Produced instance, which
provides optional parameters for creating a sink node in Kafka Streams.

  Note

You don’t always have to provide Serde objects to either the Consumed or
Produced objects. If you don’t, the application will use the
serializer/deserializer listed in the configuration. Additionally, with the
Consumed and Produced classes, you can specify a Serde for either the key or
value only.

The preceding example uses three lines to build the topology:

KStream<String,String> simpleFirstStream =

builder.stream("src-topic", Consumed.with(Serdes.String(), Serdes.String()));

KStream<String, String> upperCasedStream =

simpleFirstStream.mapValues(value -> value.toUpperCase());

upperCasedStream.to("out-topic", Produced.with(Serdes.String(), Serdes.String()));

Each step is on an individual line to demonstrate the different stages of the
building process. But all methods in the KStream API that don’t create
terminal nodes (methods with a return type of void) return a new KStream
instance, which allows you to use the fluent interface style of programming.
A fluent interface (martinfowler.com/bliki/FluentInterface.html) is an
approach where you chain method calls together for more concise and
readable code. To demonstrate this idea, here’s another way you could
construct the Yelling App topology:



builder.stream("src-topic", Consumed.with(Serdes.String(), Serdes.String()))

 .mapValues(value -> value.toUpperCase())

 .to("out-topic", Produced.with(Serdes.String(), Serdes.String()));

This shortens the program from three lines to one without losing any clarity
or purpose. From this point forward, all the examples will be written using
the fluent interface style unless doing so causes the clarity of the program to
suffer.

You’ve built your first Kafka Streams topology, but we glossed over the
important steps of configuration and Serde creation. We’ll look at those now.

6.2.2 Kafka Streams configuration

Although Kafka Streams is highly configurable, with several properties you
can adjust for your specific needs, the uses the two required configuration
settings, APPLICATION_ID_CONFIG and BOOTSTRAP_SERVERS_CONFIG:

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

Both are required because there’s no practical way to provide default values
for these configurations. Attempting to start a Kafka Streams program
without these two properties defined will result in a ConfigException being
thrown.

The StreamsConfig.APPLICATION_ID_CONFIG property uniquely identifies
your Kafka Streams application. Kafka Streams instances with the same
application-id are considered one logical application. We’ll discuss this
concept later in Kafka Streams internals section. The application-id also
serves as a prefix for the embedded client (KafkaConsumer and
KafkaProducer) configurations. You can choose to provide custom
configurations for the embedded clients by using one of the various prefix
labels found in the StreamsConfig class. However, the default client
configurations in Kafka Streams have been chosen to provide the best
performance, so one should exercise caution when adjusting them.

The StreamsConfig.BOOTSTRAP_SERVERS_CONFIG property can be a single
hostname:port pair or multiple hostname:port comma-separated pairs. The



BOOTSTRAP_SERVERS_CONFIG is what Kafka Streams uses to establish a
connection to the Kafka cluster. We’ll cover several more configuration items
as we explore more examples in the book.

6.2.3 Serde creation

In Kafka Streams, the Serdes class provides convenience methods for
creating Serde instances, as shown here:

Serde<String> stringSerde = Serdes.String();

This line is where you create the Serde instance required for
serialization/deserialization using the Serdes class. Here, you create a
variable to reference the Serde for repeated use in the topology. The Serdes
class provides default implementations for the following types: String, Byte
Array, Bytes, Long, Short, Integer, Double, Float, ByteBuffer, UUID, and
Void.

Implementations of the Serde interface are extremely useful because they
contain the serializer and deserializer, which keeps you from having to
specify four parameters (key serializer, value serializer, key deserializer, and
value deserializer) every time you need to provide a Serde in a KStream
method. In upcoming examples, you’ll use Serdes for working with Avro,
Protobuf, and JSONSchema as well as create a Serde implementation to
handle serialization/deserialization of more-complex types.

Let’s take a look at the whole program you just put together. You can find the
source in src/main/java/bbejeck/chapter_6/KafkaStreamsYellingApp.java
(source code can be found on the book’s website here:
www.manning.com/books/kafka-streams-in-action-second-edition).

Listing 6.6. Hello World: the Yelling App

//Details left out for clarity

public class KafkaStreamsYellingApp extends BaseStreamsApplication {

private static final Logger LOG =

  LoggerFactory.getLogger(KafkaStreamsYellingApp.class);



@Override

public Topology topology(Properties streamProperties) {

  Serde<String> stringSerde = Serdes.String(); #1

  StreamsBuilder builder = new StreamsBuilder(); #2

  KStream<String, String> simpleFirstStream = builder.stream("src-topic",

            Consumed.with(stringSerde, stringSerde)); #3

  KStream<String, String> upperCasedStream =

  simpleFirstStream.mapValues(value)-> value.toUpperCase()); #4

  upperCasedStream.to("out-topic",

      Produced.with(stringSerde, stringSerde)); #5

  return builder.build(streamProperties);

}

public static void main(String[] args) throws Exception {

    Properties streamProperties = new Properties();

    streamProperties.put(StreamsConfig.APPLICATION_ID_CONFIG,

      "yelling_app_id");

    streamProperties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,

      "localhost:9092");

    KafkaStreamsYellingApp yellingApp = new KafkaStreamsYellingApp();

    Topology topology = yellingApp.topology(streamProperties);

    try(KafkaStreams kafkaStreams =

                    new KafkaStreams(topology, streamProperties)) {

        LOG.info("Hello World Yelling App Started");

        kafkaStreams.start(); #6

        LOG.info("Shutting down the Yelling APP now");

    }

 }

}

You’ve now constructed your first Kafka Streams application. Let’s quickly
review the steps involved, as it’s a general pattern you’ll see in most of your
Kafka Streams applications:

1. Create a Properties instance for configurations.
2. Create a Serde object.
3. Construct a processing topology.
4. Start the Kafka Streams program.



We’ll now move on to a more complex example that will allow us to explore
more of the Streams DSL API.

6.3 Masking credit card numbers and tracking
purchase rewards in a retail sales setting

Imagine you work as a infrastructure engineer for the retail giant, ZMart.
ZMart has adopted Kafka as its data processing backbone and is looking to
capitalize on the ability to quickly process customer data, intended to help
ZMart do business more efficiently.

At this point you’re tasked to build a Kafka Streams application to work with
purchase records as they come streaming in from transactions in ZMart
stores.

Here are the requirements for the streaming program, which will also serve as
a good description of what the program will do:

1. All Purchase objects need to have credit card numbers protected, in this
case by masking the first 12 digits.

2. You need to extract the items purchased and the ZIP code to determine
regional purchase patterns and inventory control. This data will be
written out to a topic.

3. You need to capture the customer’s ZMart member number and the
amount spent and write this information to a topic. Consumers of the
topic will use this data to determine rewards.

With these requirements at hand, let’s get started building a streaming
application that will satisfy ZMart’s business requirements.

6.3.1 Building the source node and the masking processor

The first step in building the new application is to create the source node and
first processor of the topology. You’ll do this by chaining two calls to the
KStream API together. The child processor of the source node will mask
credit card numbers to protect customer privacy.



Listing 6.7. Building the source node and first processor

KStream<String, RetailPurchase> retailPurchaseKStream =

     streamsBuilder.stream("transactions",

     Consumed.with(stringSerde, retailPurchaseSerde))

    .mapValues(creditCardMapper);

You create the source node with a call to the StreamBuilder.stream method
using a default String serde, a custom serde for RetailPurchase objects,
and the name of the topic that’s the source of the messages for the stream. In
this case, you only specify one topic, but you could have provided a comma-
separated list of names or a regular expression to match topic names instead.

In this code example, you provide Serdes with a Consumed instance, but you
could have left that out and only provided the topic name and relied on the
default Serdes provided via configuration parameters.

The next immediate call is to the KStream.mapValues method, taking a
ValueMapper<V, V1> instance as a parameter. Value mappers take a single
parameter of one type (a RetailPurchase object, in this case) and map that
object to a to a new value, possibly of another type. In this example,
KStream.mapValues returns an object of the same type (RetailPurchase),
but with a masked credit card number.

When using the KStream.mapValues method, you don’t have access to the
key for the value computation. If you wanted to use the key to compute the
new value, you could use the ValueMapperWithKey<K, V, VR> interface,
with the expectation that the key remains the same. If you need to generate a
new key along with the value, you’d use the KStream.map method that takes a
KeyValueMapper<K, V, KeyValue<K1, V1>> interface.

  Important

Keep in mind that Kafka Streams functions are expected to operate without
side effects, meaning the functions don’t modify the original key and or
value, but return new objects when making modifications.

6.3.2 Adding the patterns processor



Now you’ll build the second processor, responsible for extracting
geographical data from the purchase, which ZMart can use to determine
purchase patterns and inventory control in regions of the country. There’s
also an additional wrinkle with building this part of the topology. The ZMart
business analysts have determined they want to see individual records for
each item in a purchase and they want to consider purchases made regionally
together.

The RetailPurchase data model object contains all the items in a customer
purchase so you’ll need to emit a new record for each one in the transaction.
Additionally, you’ll need to add the zip-code in the transaction as the key.
Finally you’ll add a sink node responsible for writing the pattern data to a
Kafka topic.

In pattrens processor example you can see the retailPurchaseKStream
processor using a flatMap operator. The KStream.flatMap method takes a
ValueMapper or a KeyValueMapper that accepts a single record and returns an
Iterable (any Java Collection) of new records, possibly of a different type.
The flapMap processor "flattens" the Iterable into one or more records
forwarded to the topology. Let’s take a look at an illustrating how this works:

Figure 6.6. FlatMap emits zero or more records from a single input records by flattening a
collection returned from a KeyValueMapper or ValueMapper

The process of a flatMap is a common operation from functional



programming where one input results creating a collection of items (the map
portion of the function) but instead of returning the collection, it "flattens" the
collection or grouping into a sequence of records.

In our case here with Kafka Streams, a retail purchase of five items results in
five individual KeyValue objects with the keys corresponding to the zip-code
and the values a PurchasedItem object.

Here’s the code listing for the KeyValueMapper:

Listing 6.8. KeyValueMapper returning a collection of PurchasedItem objects

KeyValueMapper<String, RetailPurchase,

 Iterable<KeyValue<String, PurchasedItem>>> retailTransactionToPurchases =

    (key, value) -> {

      String zipcode = value.getZipCode(); #1

      return value.getPurchasedItemsList().stream() #2

                .map(purchasedItem ->

                    KeyValue.pair(zipcode, purchasedItem))

                .collect(Collectors.toList());

}

The KeyValueMapper here takes an individual transaction object and returns a
list of KeyValue objects. The key is the zipcode where the transaction took
place and the value is an item included in the purchase. Now let’s put our
new KeyValueMapper into this section of the topology we’re creating:

Listing 6.9. Patterns processor and a sink node that writes to Kafka

KStream<String, Pattern> patternKStream = retailPurchaseKStream

                .flatMap(retailTransactionToPurchases) #1

                .mapValues(patternObjectMapper);  #2

patternKStream.print(Printed.<String,Pattern>toSysOut()

              .withLabel("patterns")); #3

patternKStream.to("patterns",

        Produced.with(stringSerde,purchasePatternSerde)); #4

In this code example you declare a variable to hold the reference of the new
KStream instance and you’ll see why in an upcoming section. The purchase-
patterns processor forwards the records it receives to a child node of its own,



defined by the method call KStream.to, writing to the patterns topic. Note
the use of a Produced object to provide the previously built Serde. I’ve also
snuck in a KStream#print processor that prints the key-values of the stream
to the console, we’ll talk more about viewing stream records in an upcoming
section.

The KStream.to method is a mirror image of the KStream.source method.
Instead of setting a source for the topology to read from, it defines a sink
node that’s used to write the data from a KStream instance to a Kafka topic.
The KStream.to method also provides overloads which accept an object
allowing for dynamic topic selection and we’ll discuss that soon.

6.3.3 Building the rewards processor

The third processor in the topology is the customer rewards accumulator node
shown in figure 8, which will let ZMart track purchases made by members of
their preferred customer club. The rewards accumulator sends data to a topic
consumed by applications at ZMart HQ to determine rewards when
customers complete purchases.

Listing 6.10. Third processor and a terminal node that writes to Kafka

 KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =

       retailPurchaseKStream.mapValues(rewardObjectMapper);

rewardsKStream.to("rewards",

        Produced.with(stringSerde,rewardAccumulatorSerde));

You build the rewards accumulator processor using what should be by now a
familiar pattern: creating a new KStream instance that maps the raw purchase
data contained in the retail purchase object to a new object type. You also
attach a sink node to the rewards accumulator so the results of the rewards
KStream can be written to a topic and used for determining customer reward
levels.

Now that you’ve built the application piece by piece, let’s look at the entire
application (src/main/java/bbejeck/chapter_6/ZMartKafkaStreamsApp.java).

Listing 6.11. ZMart customer purchase KStream program



public class ZMartKafkaStreamsApp {

// Details left out for clarity

@Override

public Topology topology(Properties streamProperties) {

StreamsBuilder streamsBuilder = new StreamsBuilder();

KStream<String, RetailPurchaseProto.RetailPurchase> retailPurchaseKStream =

        streamsBuilder.stream("transactions",

            Consumed.with(stringSerde, retailPurchaseSerde))

        .mapValues(creditCardMapper);  #1

KStream<String, PatternProto.Pattern> patternKStream =

   retailPurchaseKStream

        .flatMap(retailTransactionToPurchases)

        .mapValues(patternObjectMapper);  #2

patternKStream.to("patterns",

      Produced.with(stringSerde,purchasePatternSerde));

KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =

      retailPurchaseKStream.mapValues(rewardObjectMapper); #3

rewardsKStream.to("rewards",

      Produced.with(stringSerde,rewardAccumulatorSerde));

retailPurchaseKStream.to("purchases",

      Produced.with(stringSerde,retailPurchaseSerde));

return streamsBuilder.build(streamProperties);

}

  Note

I’ve left out some details in the listing clarity. The code examples in the book
aren’t necessarily meant to stand on their own. The source code that
accompanies this book provides the full examples.

As you can see, this example is a little more involved than the Yelling App,
but it has a similar flow. Specifically, you still performed the following steps:



Create a StreamsBuilder instance.
Build one or more Serde instances.
Construct the processing topology.
Assemble all the components and start the Kafka Streams program.

You’ll also notice that I haven’t shown the logic responsible for creating the
various mappings from the original transaction object to new types and that is
by design. First of all, the code for a KeyValueMapper or ValueMapper is
going to be distinct for each use case, so the particular implementations don’t
matter too much.

But more to the point, if you look over the entire Kafka Streams application
you can quickly get a sense of what each part is accomplishing, and for the
most part any details of working directly with Kafka are abstracted away.
And to me that is the strength of Kafka Streams; with the DSL you get
specify what operations you need to perform on the event stream and Kafka
Streams handles the details. Now it’s true that no one framework can solve
every problem and sometimes you need a more hands-on lower level
approach and you’ll learn about that in a upcoming chapter when we cover
the Processor API.

In this application, I’ve mentioned using a Serde, but I haven’t explained
why or how you create them. Let’s take some time now to discuss the role of
the Serde in a Kafka Streams application.

6.3.4 Using Serdes to encpsulate serializers and deserializers in
Kafka Streams

As you learned in previous chapters, Kafka brokers work with records in byte
array format. It’s the responsibility of the client to serialize when producing
records and deserialize when consuming. It’s no different with Kafka Streams
as it uses embedded consumers and producers. There is one small difference
when configuring a Kafka Streams application for serialization vs. raw
producer or consumer clients. Instead of providing a specific deserializer or
serializer, you configure Kafka Streams with a Serde, which contains both
the serializer and deserializer for a specific type.



Some serdes are provided out of the box by the Kafka client dependency,
(String, Long, Integer, and so on), but you’ll need to create custom serdes
for other objects.

In the first example, the Yelling App, you only needed a
serializer/deserializer for strings, and an implementation is provided by the
Serdes.String() factory method. In the ZMart example, however, you need
to create custom Serde instances, because of the arbitrary object types. We’ll
look at what’s involved in building a Serde for the RetailPurchase class.
We won’t cover the other Serde instances, because they follow the same
pattern, just with different types.

  Note

I’m including this discussion on Serdes creation for completeness, but in the
source code there is a class SerdeUtil which provides a protobufSerde
method which you’ll see in the examples and encapsulates the steps described
in this section.

Building a Serde requires implementations of the Deserializer<T> and
Serializer<T> interfaces. We covered creating your own serializer and
deserializer instances towards the end of chapter 3 on Schema Registry, so I
won’t go over those details again here. For reference you can see the full
code for the ProtoSerializer and ProtoDeserializer in the
bbejeck.serializers package in the source for the book.

Now, to create a Serde<T> object, you’ll use the Serdes.serdeFrom factory
method taking steps like the following:

Deserializer<RetailPurchaseProto.RetailPurchase> purchaseDeserializer =

      new ProtoDeserializer<>(); #1

Serializer<RetailPurchaseProto.RetailPurchase> purchaseSerializer =

      new ProtoDeserializer<>(); #2

Map<String, Class<RetailPurchaseProto.RetailPurchase>> configs

            = new HashMap<>();

   configs.put(false, RetailPurchaseProto.RetailPurchase.class);

          deserializer.configure(configs,isKey);  #3

Serde<RetailPurchaseProto.RetailPurchase> purchaseSerde =

     Serdes.serdeFrom(purchaseSerializer,purchaseDeserializer); #4



As you can see, a Serde object is useful because it serves as a container for
the serializer and deserializer for a given object. Here you need to create a
custom Serde for the Protobuf objects because the streams example does not
use Schema Registry, but using it with Kafka Streams is a perfectly valid use
case. Let’s take a quick pause to go over how you configure your Kafka
Streams application when using it with Schema Registry.

6.3.5 Kafka Streams and Schema Registry

In chapter four I discussed the reasons why you’d want to use Schema
Registry with a Kafka based application. I’ll briefly describe those reasons
here. The domain objects in your application represent an implicit contract
between the different users of your application. For example imagine one
team of developers change a field type from a java.util.Date to a long and
start producing those changes to Kafka, the downstream consumers
applications will break due to the unexpected field type change.

So by using a schema and using Schema Resitry to store it, you make it much
easier to enforce this contract by enabling better coordination and
compatibility checks. Additionally, there are Schema Registry project
provides Schema Registry "aware" (de)serializers and Serdes, alleviating the
developer from writing the serialization code.

  Important

Schema Registry provides both a JSONSerde and a JSONSchemaSerde, but
they are not interchangeable! The JSONSerde is for Java objects that use
JSON for describing the object. The JSONSchemaSerde is for objects that use
JSONSchema as the formal definition of the object.

So how would the ZMartKafkaStreamsApp change to work with Schema
Registry? All that is required is to use Schema Registry aware Serde
instances. The steps for creating a Schema Regeistry aware Serde are simple:

1. Create an instance of one the provided Serde instances
2. Configure it with the URL for a Schema Registry server.



Here are the concrete steps you’ll take:

KafkaProtobufSerdePurchase> protobufSerde =

 new KafkaProtobufSerde<>(Purchase.class); #1

String url = "https://...";                                 #2

Map<String, Object> configMap = new HashMap<>();

configMap.put(

  AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,

  url);                                             #3

protobufSerde.configure(configMap, false);   #4

So, with just few lines of code, you’ve created a Schema Registry aware
Serde that you can use in your Kafka Streams application.

  Important

Since Kafka Streams contains consumer and producer clients, the same rules
for schema evolution and compatibility apply

We’ve covered a lot of ground so far in developing a Kafka Streams
application. We still have much more to cover, but let’s pause for a moment
and talk about the development process itself and how you can make life
easier for yourself while developing a Kafka Streams application.

6.4 Interactive development

You’ve built the graph to process purchase records from ZMart in a
streaming fashion, and you have three processors that write out to individual
topics. During development it would certainly be possible to have a console
consumer running to view results. But instead of using an external tool, it
would be more convenient to have your Kafka Streams application print or
log from anywhere you want inside the topology. This visual type of
feedback directly from the application is very efficient during the
development process. You enable this output by using the KStream.peek() or
the KStream.print() method.

The KStream.peek() allows you to perform a stateless action (via the
ForeachAction interface) on each record flowing throw the KStream



instance. It’s important to note that this operation is not expected to alter the
incoming key and value. Instead the peek operator is an opportunity to print,
log, or collect information at arbitrary points in the topology. Let’s take a
another look at Yelling application, but now add a way to view the records
before and after the application starts "yelling":

Listing 6.12. Printing records flowing through the Yelling application found in
bbejeck/chapter_6/KafkaStreamsYellingAppWithPeek

// Details left out for clarity

ForeachAction<String, String> sysout =

  (key, value) ->

   System.out.println("key " + key

   + " value " + value);

builder.stream("src-topic",

  Consumed.with(stringSerde, stringSerde))

  .peek(sysout)      #1

  .mapValues(value -> value.toUpperCase())

  .peek(sysout)      #2

  .to( "out-topic",

  Produced.with(stringSerde, stringSerde));

Here we’ve strategically placed these peek operations that will print records
to the console, both pre and post the mapValues call.

The KStream.print() method is purpose built for printing records. Some of
the previous code snippets contained examples of using it, but we’ll show it
again here.

Listing 6.13. Printing records using KStream.print found in
bbejeck/chapter_6/KafkaStreamsYellingApp

// Details left out for clarity

 ...

 KStream<...> upperCasedStream = simpleFirstStream.mapValues(...);

 upperCasedStream.print(Printed.toSysOut()); #1

 upperCasedStream.to(...);

In this case, you’re printing the upper-cased words immediately after



transformation. So what’s the difference between the two approaches? You
should notice with the KStream.print() operation, you didn’t chain the
method calls together like you did using KStream.peek() and this is becuase
print is a terminal method.

Terminal methods in Kafka Streams have a return signature of void, hence
you can’t chain another method call afterward, as it terminates the stream.
The terminal methods in KStream interface are print, foreach, process, and
to. Asside from the print method we just discussed, you’ll use to when you
write results back to Kafka. The foreach method is useful for performing an
operation on each record when you don’t need to write the results back to
Kafka, such as calling a microservice. The process method allows for
integrating the DSL with Processor API which we’ll discuss in an upcoming
chapter.

While either printing method is a valid approach, my preference is to use the
peek method because it makes it easy to slip a print statement into an existing
stream. But this is a personal preference so ultimately it’s up to you to decide
which approach to use.

So far we’ve covered some of the basic things we can do with a Kafka
Streams application, but we’ve only scratched the surface. Let’s continue
exploring what we can do with an event stream.

6.5 Choosing which events to process

So far you’ve seen how to apply operations to events flowing through the
Kafka Streams application. But you are processing every event in the stream
and in the same manner. What if there are events you don’t want to handle?
Or what about events with a given attribute that require you to handle them
differently?

Fortunately, there are methods available to provide you the flexibility to meet
those needs. The KStream#filter method drops records from the stream not
matching a given predicate. The KStream#split allows you split the original
stream into branches for different processing based on provided predicate(s)
to reroute records. To make these new methods more concrete let’s update



the requirements to the original ZMart application:

The ZMart updated their rewards program and now only provides points
for purchases over $10. With this change it would be ideal to simply
drop any non-qualifying purchases from the rewards stream.
ZMart has expanded and has bought an electronics chain and a popular
coffee house chain. All purchases from these new stores will flow into
the streaming application you’ve set up, but you’ll need to separate
those purchases out for different treatment while still processing
everything else in the application the same.

  Note

From this point forward, all code examples are pared down to the essentials
to maximize clarity. Unless there’s something new to introduce, you can
assume that the configuration and setup code remain the same. These
truncated examples aren’t meant to stand alone—the full code listing for this
example can be found in
src/main/java/bbejeck/chapter_6/ZMartKafkaStreamsFilteringBranchingApp.java.

6.5.1 Filtering purchases

The first update is to remove non-qualifying purchases from the rewards
stream. To accomplish this, you’ll insert a KStream.filter() before the
KStream.mapValues method. The filter takes a Predicate interface as a
parameter, and it has one method defined, test(), which takes two
parameters—the key and the value—although, at this point, you only need to
use the value.

  Note

There is also KStream.filterNot, which performs filtering, but in reverse.
Only records that don’t match the given predicate are processed further in the
topology.

By making these changes, the processor topology graph changes as shown in



figure 6.12.

Listing 6.14. Adding a filter to drop purchases not meeting rewards criteria

 KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =

    retailPurchaseKStream #1

    .mapValues(rewardObjectMapper) #2

    .filter((key,potentialReward) ->

            potentialReward.getPurchaseTotal() > 10.00); #3

You have now successfully updated the rewards stream to drop purchases
that don’t qualify for reward points.

6.5.2 Splitting/branching the stream

There are new events flowing into the purchase stream and you need to
process them differently. You’ll still want to mask any credit card
information, but after that the purchases from the acquired coffee and
electronics chain need to get pulled out and sent to different topics.
Additionally, you need to continue to process the original events in the same
manner.

What you need to do is split the original stream into 3 sub-streams or
branches; 2 for handling the new events and 1 to continue processing the
original events in the topology you’ve already built. This splitting of streams
sounds tricky, but Kafka Streams provides an elegant way to do this as we’ll
see now. Here’s an illustration demonstrating the conceptual idea of what
splitting a stream involves:

Figure 6.7. Creating branches for the two specific purchase types



The general steps you’ll take to split a stream into branches are the following:

1. Use the KStream.split() method which returns a BranchedKStream
object

2. Call BranchedKStream.branch() with a with a pair of Predicate and
Branched objects as parameters. The Predicate contains a condition
when tested against a record returns either true or false. The Branched
object contains the logic for processing a record. Each execution of this
method creates a new branch in the stream.

3. You complete the branching with a call to either
BranchedKStream.defaultBranch() or
BranchedKStream.noDefaultBranch(). If you define a default branch
any records not matching all the predicates are routed there. With the
noDefaultBranch option, non-matching records get dropped. When



calling either of the branching termination methods a Map<String,
KStream<K, V> is returned. The Map may contain KStream objects for
new branch, depending on how you’ve built the Branched objects. We’ll
cover more options for branching soon.

The Predicate acts as a logical gate for it’s companion Branched object. If
the condition returns true, then the "gate" opens and the record flows into the
processor logic for that branch.

  Important

When splitting a KStream you can’t change the types of the keys or values, as
each branch has the same types as the parent or original branch.

In our case here, you’ll want to filter out the two purchase types into their
own branch. Then create a default branch consisting of everything else. This
default branch is really the original purchase stream so it will handle all of the
records that don’t match either predicate.

Now that we’ve reviewed the concept let’s take a look at the code you’ll
implement:

Listing 6.15. Splitting the stream found in
bbejeck/chapter_6/ZMartKafkaStreamsFilteringBranchingApp

//Several details left out for clarity

Predicate<String, Purchase> isCoffee =

  (key, purchase) ->

   purchase.getDepartment().equalsIgnoreCase("coffee"); #1

Predicate<String, Purchase> isElectronics =

  (key, purchase) ->

  purchase.getDepartment().equalsIgnoreCase("electronics"); #1

purchaseKStream.split())  #2

.branch(isCoffee,

 Branched.withConsumer(coffeeStream -> coffeeStream.to("coffee-topic"))) 

.branch(isElectronics,

  Branched.withConsumer(electronicStream ->



  electronicStream.to("electronics"))  #4

.defaultBranch(Branched.withConsumer(retailStream ->

                retailStream.to("purchases")); #5

Here in this example you’ve split the purchase stream into two new streams,
one each for the coffee and electronic purchases. Branching provides an
elegant way to process records differently within the same stream. While in
this initial example each one is a single processor writing records to a topic,
these branched streams can be as complex as you need to make them.

  Note

This example sends records to several different topics. Although you can
configure Kafka to automatically create topics it’s not a good idea to rely on
this mechanism. If you use auto-creation, the topics are configured with
default values from the server.config properties file, which may or may not
be the settings you need. You should always think about what topics you’ll
need, the number of partitions, the replication factor and create them before
running your Kafka Streams application.

In this branching example, you’ve split out discrete KStream objects, which
stand alone and don’t interact with anything else in the application and that is
perfectly an acceptable approach. But now let’s consider a situation where
you have an event stream you want to tease out into separate components, but
you need to combine the new streams with existing ones in the application.

Consider you have IoT sensors and early on you combined two related sensor
readings into one topic, but as time went on newer sensors started to send
results to distinct topics. The older sensors are fine as is and it would be cost
prohibited to go back and make the necessary changes to fit the new
infrastructure. So you’ll need an application that will split the legacy stream
into two streams and combine or merge them with the newer streams
consisting of a single reading type. Another factor is that any proximity
readings are reported in feet, but the new ones are in meters, so in addition to
extracting the proximity reading into a separate stream, you need to convert
the reading values into meters.



Now let’s walk through an example of how you’ll do splitting and merging
starting with the splitting

Listing 6.16. Splitting the stream in a way you have access to new streams

//Details left out for clarity

KStream<String, SensorProto.Sensor> legacySensorStream =

    builder.stream("combined-sensors", sensorConsumed);

 Map<String, KStream<String, SensorProto.Sensor>> sensorMap =

        legacySensorStream.split(Named.as("sensor-")) #1

        .branch(isTemperatureSensor, Branched.as("temperature")) #2

        .branch(isProximitySensor,

            Branched.withFunction(

                ps -> ps.mapValues(feetToMetersMapper), "proximity")) 

        .noDefaultBranch(); #4

What’s happening overall is each branch call places an entry into a Map where
the key is the concatenation of name passed into the KStream.split()
method and the string provided in the Branched parameter and the value is a
KStream instance resulting from each branch call.

In the first branching example, the split and subsequent branching calls also
returns a Map, but in that case it would have been empty. The reason is that
when you pass in a Branched.withConsumer (a java.util.Consumer
interface) it’s a void method, it returns nothing, hence no entry is placed in
the map. But the Branched.withFunction (a java.util.Function interface)
accepts a KStream<K, V> object as a parameter and returns a KStream<K,
V> instance so it goes into the map as an entry. At annotation three, the
function takes the branched KStream object and executes a MapValues to
convert the proximity sensor reading values from feet to meters, since the
sensor records in the updated stream are in meters.

I’d like to point out some subtlety here, the branch call at annotation two
does not provide a function, but it still ends up in the resulting Map, how is
that so? When you only provide a Branched parameter with name, it’s treated
the same if you had used a java.util.Function that simply returns the
provided KStream object, also known as an identity function. So what’s the



determining factor to use either Branched.withConsumer or
Branched.withFunction? I can answer that question best by going over the
next block of code in our example:

Listing 6.17. Splitting the stream and gaining access to the newly created streams

KStream<String, SensorProto.Sensor> temperatureSensorStream =  #1

      builder.stream("temperature-sensors", sensorConsumed);

KStream<String, SensorProto.Sensor> proximitySensorStream =  #2

      builder.stream("proximity-sensors", sensorConsumed);

temperatureSensorStream.merge(sensorMap.get("sensor-temperature"))

      .to("temp-reading", Produced.with(stringSerde, sensorSerde)); 

proximitySensorStream.merge(sensorMap.get("sensor-proximity"))

     .to("proximity-reading", Produced.with(stringSerde, sensorSerde)); 

To refresh your memory, the requirements for splitting the stream were to
extract the different IoT sensor results by type and place them in the same
stream as the new updated IoT results and convert any proximity readings
into meters. You accomplish this task by extracting the KStream from the
map with the corresponding keys created in the branching code in the
previous code block.

To accomplish putting the branched legacy stream with the new one, you use
a DSL operator KStream.merge which is the functional analog of
KStream.split it merges different KStream objects into one. With
KStream.merge there is no ordering guarantees between records of the
different streams, but the relative order of each stream remains. In other
words the order of processing between the legacy stream and the updated one
is not guaranteed to be in any order but the order inside in each stream is
preserved.

So now it should be clear why you use Branched.withConsumer or
Branched.withFunction in the latter case you need to get a handle on the
branched KStream so you can integrate into the outer application in some
manner, while with the former you don’t need access to the branched stream.

That wraps up our discussion on branching and merging, so let’s move on to



cover naming topology nodes in the DSL.

6.5.3 Naming topology nodes

When you build a topology in the DSL, Kafka Streams creates a graph of
processor nodes, giving each one a unique name. Kafka Streams generates
these node names by taking the name the function of the processor and
appending globally incremented number. To view this description of the
topology, you’ll need to get the TopologyDescription object. Then you can
view it by printing it to the console.

Listing 6.18. Getting a description of the topology and printing it out

TopologyDescription topologyDescription =

  streamsBuilder.build().describe();

System.out.println(topologyDescription.toString());

Running the code above yields this output on the console:

Listing 6.19. Full topology description of the KafkaStreamsYellingApplication

Topologies:

   Sub-topology: 0

    Source: KSTREAM-SOURCE-0000000000 (topics: [src-topic])  #1

      --> KSTREAM-MAPVALUES-0000000001  #2

    Processor: KSTREAM-MAPVALUES-0000000001 (stores: []) #3

      --> KSTREAM-SINK-0000000002

      <-- KSTREAM-SOURCE-0000000000  #4

    Sink: KSTREAM-SINK-0000000002 (topic: out-topic) #5

      <-- KSTREAM-MAPVALUES-0000000001

From looking at the names, you can see the first node ends in a zero, with the
second node KSTREAM-MAPVALUES ending in a one etc. The Sub-topology
listing indicates a portion of the topology that is a distinct source node and
every processor downstream of the source node is a member of the given
Sub-topology. If you were to define a second stream with a new source, then
that would show up as Sub-topology: 1. We’ll see more about sub-
topologies a bit later in the book when we cover repartitioning.

The arrows -→ pointing to the right show the flow of records in the topology.



The arrows pointing left ←- indicate the lineage of the record flow, where the
current processor received records one. Note that a processor could forward
records to more than one node and a single node could get input from
multiple nodes.

Looking at this topology description, it’s easy to get sense of the structure of
the Kafka Streams application. However, once you start building more
complex applications, the generic names with the numbers become hard to
follow. For this reason, Kafka Streams provides a way to name the
processing nodes in the DSL.

Almost all the methods in the Streams DSL have an overload that takes a
Named object where you can specify the name used for the node in the
topology. Being able to provide the name is important as you can make it
relate to the processing nodes role in your application, not just what the
processor does. Configuration objects like Consumed and Produced have a
withName method for giving a name to the operator. Let’s revisit the
KafkaStreamsYellingApplication but this time we’ll add a name for each
processor:

Listing 6.20. Updated KafkaStreamsYellingApplication with names

 builder.stream("src-topic",

                Consumed.with(stringSerde, stringSerde)

                        .withName("Application Input")) #1

        .mapValues((key, value) -> value.toUpperCase(),

                   Named.as("Convert to Yelling")) #2

        .to("out-topic",

             Produced.with(stringSerde, stringSerde)

                     .withName("Application Output")) #3

And the description from the updated topology with names will now look like
this:

Listing 6.21. Full topology description with provided names

Topologies:

   Sub-topology: 0

    Source: Application-Input (topics: [src-topic])

      --> Convert-to-Yelling



    Processor: Convert-to-Yelling (stores: [])

      --> Application-Output

      <-- Application-Input

    Sink: Application-Output (topic: out-topic)

      <-- Convert-to-Yelling

Now you can view the topology description and get a sense of the role for
each processor in the overall application, instead of just what the processor
itself does. Naming the processor nodes becomes critical for your application
when there is state involved, but we’ll get to that in a later chapter.

Next we’ll take a look at how you can use dynamic routing for your Kafka
Streams application.

6.5.4 Dynamic routing of messages

Say you need to differentiate which department of the store the purchase
comes from—housewares, say, or shoes. You can use dynamic routing to
accomplish this task on a per-record basis. The KStream.to() method has an
overload that takes a TopicNameExtractor which will dynamically determine
the correct Kafka topic name to use. Note that the topics need to exist ahead
of time, by default Kafka Streams will not create extracted topic names
automatically.

So, if we go back to the branching example each object has a department
field, so instead of creating a branch we will process these events with
everything else and use the TopicNameExtractor to determine the topic
where we route the events to.

The TopicNameExtractor has one method extract which you implement to
provide the logic for determining the topic name. What you’ve going to do
here is check if the department of the purchase matches one of the special
conditions for routing the purchase events to a different topic. If it does
match, then return the name of the department for the topic name (knowing
they’ve been created ahead of time). Otherwise return the name of topic
where the rest of the purchase events are sent to.

Listing 6.22. Implementing the extract method to determine the topic name based on purchase
department



@Override

public String extract(String key,

                      Purchase value,

                      RecordContext recordContext) {

    String department = value.getDepartment();

    if (department.equals("coffee")

            || department.equals("electronics")) { #1

        return department;

    } else {

        return "purchases";             #2

    }

}

  Note

The TopicNameExtractor interface only has one method to implement, I’ve
chosen to use a concrete class because you can then write a test for it.

Although the code example here is using the value to determine the topic to
use, it could very well use the key or a combination of the key and the value.
But the third parameter to the TopicNameExtractor#extract method is a
RecordContext object. Simply stated the RecordContext is the context
associated with a record in Kafka Streams.

The context contains metadata about the record- the original timestamp of the
record, the original offset from Kafka, the topic and partition it was received,
and the Headers. We discussed headers in the chapter on Kafka clients, so I
won’t go into the details again here. One of the primary use cases for headers
is routing information, and Kafka Streams exposes them via the
ProcessorContext. Here’s one possible example for retrieving the topic
name via a Header

In this example you’ll extract the Headers from the record context. You first
need to check that the Headers are not null, then you proceed to drill down to
get the specific routing information. From there you return the name of topic
to use based on the value stored in the Header. Since Headers are optional
and may not exist or contain the specific "routing" Header you’ve defined a
default value in the TopicNameExtractor and return it in the case where the
output topic name isn’t found.



Listing 6.23. Using information in a Header for dynamically determining the topic name to send a
record to

public String extract(String key,

                      PurchaseProto.Purchase value,

                      RecordContext recordContext) {

        Headers headers = recordContext.headers(); #1

       if (headers != null) {

        Iterator<Header> routingHeaderIterator =

          headers.headers("routing").iterator();

        if (routingHeaderIterator.hasNext()) {

             Header routing = routingHeaderIterator.next(); #2

             return new String(routing.value(),

                               StandardCharsets.UTF_8); #3

        }

      }

       return defaultTopicName; #4

    }

Now you’ve learned about using the Kafka Streams DSL API.

6.6 Summary

Kafka Streams is a graph of processing nodes called a topology. Each
node in the topology is responsible for performing some operation on
the key-value records flowing through it. A Kafka Streams applciation is
minimally composed of a source node that consumes records from a
topic and sink node that produces results back to a Kafka topic. You
configure a Kafka Streams application minimally with the application-id
and the bootstrap servers configuration. Multiple Kafka Streams
applications with the same application-id are logically considered one
application.
You can use the KStream.mapValues function to map incoming record
values to new values, possibly of a different type. You also learned that
these mapping changes shouldn’t modify the original objects. Another
method, KStream.map, performs the same action but can be used to map
both the key and the value to something new.
To selectively process records you can use the KStream.filter



operation where records that don’t match a predicate get dropped. A
predicate is a statement that accepts an object as a parameter and returns
true or false depending on whether that object matches a given
condition. There is also the KStream.filterNot method that does the
opposite - it only forwards key-value pairs that don’t match the
predicate.
The KStream.branch method uses predicates to split records into new
streams when a record matches a given predicate. The processor assigns
a record to a stream on the first match and drops unmatched records.
Branching is an elegant way of splitting a stream up into multiple
streams where each stream can operate independantly. To perform the
opposite action there is KStream.merge which you can use to merge 2
KStream objects into one stream.
You can modify an existing key or create a new one using the
KStream.selectKey method.
For viewing records in the topology you can use either KStream.print
or KStream.peek (by providing a ForeachAction that does the acutal
printing). KStream.print is a terminal operation meaning that you can’t
chain methods after calling it. KStream.peek returns a KStream instance
and this makes it easier to embed before and after KStream methods.
You can view the generated graph of a Kafka Streams application by
using the Topology.describe method. All graph nodes in Kafka
Streams have auto-generated names by default which can make the
graph hard to understand when the application grows in complexity.
You can avoid this situation by providing names to each KStream
method so when you print the graph, you have names describing the role
of each node.
You can route records to different topics by passing a
TopicNameExtractor as a parameter to the KStream.to method. The
TopicNameExtractor can inspect the key, value, or headers to determine
the corect topic name to use for producing records back to Kafka. The
topics must be created ahead of time.



7 Streams and State
This chapter covers

Adding stateful operations to Kafka Streams
Using state stores in Kafka Streams
Enriching event streams with joins
Learning how timestamps drive Kafka Streams

In the last chapter, we dove headfirst into the Kafka Streams DSL and built a
processing topology to handle streaming requirements from purchase activity.
Although you built a nontrivial processing topology, it was one dimensional
in that all transformations and operations were stateless. You considered each
transaction in isolation, without any regard to other events occurring at the
same time or within certain time boundaries, either before or after the
transaction. Also, you only dealt with individual streams, ignoring any
possibility of gaining additional insight by joining streams together.

In this chapter, you’ll extract the maximum amount of information from the
Kafka Streams application. To get this level of information, you’ll need to
use state. State is nothing more than the ability to recall information you’ve
seen before and connect it to current information. You can utilize state in
different ways. We’ll look at one example when we explore the stateful
operations, such as the accumulation of values, provided by the Kafka
Streams DSL.

We’ll get to another example of using state when we’ll discuss the joining of
streams. Joining streams is closely related to the joins performed in database
operations, such as joining records from the employee and department tables
to generate a report on who staffs which departments in a company.

We’ll also define what the state needs to look like and what the requirements
are for using state when we discuss state stores in Kafka Streams. Finally,
we’ll weigh the importance of timestamps and look at how they can help you
work with stateful operations, such as ensuring you only work with events



occurring within a given time frame or helping you work with data arriving
out of order.

7.1 Stateful vs stateless

Before we go on with examples, let’s provide a description of the difference
between stateless and stateful. In a stateless operation there is no additional
information retrieved, what’s present is enough to complete the desired
action. On the other hand, a stateful operation is more complex because it
involves keeping the state of previous event. A basic example of a stateful
operation is an aggregation.

For example, consider this function:

Listing 7.1. Stateless function example

public boolean numberIsOnePredicate (Widget widget) {

    return widget.number == 1;

}

Here all the Widget object contains all the information needed to execute the
predicate, there’s no need to lookup or store data. Now let’s take a look at an
example of a stateful function

Listing 7.2. Stateful function example

public int count(Widget widget) {

  int widgetCount = hashMap.compute(widget.id,

   (key, value) -> (value == null) ? 1 : value + 1)

  return widgetCount;

}

Here in the count function, we are computing the total of widgets with the
same id. To perform the count we first must look up the current number by
id, increment it, and then store the new number. If no number is found, we go
ahead and provide an initial value, a 1 in this case.



While this is a trivial example of using state, the principals involved are what
matter here. We are using a common identifier across different objects, called
a key, to store and retrieve some value type to track a given state that we
want to observe. Additionally, we use an initializing function to produce a
value when one hasn’t been calculated yet for a given key.

These are the core steps we’re going to explore and use in this chapter,
although it will be far more robust than using the humble HashMap!

7.2 Adding stateful operations to Kafka Streams

So the next question is why you need to use state when processing an event
stream? The answer is any time you need to track information or progress
across related events. For example consider a Kafka Streams application
tracking the progress of players in an online poker game. Participants play in
rounds and their score from each round is transmitted to a server then reset to
zero for the start of the next round. The game server the produces the players
score to a topic.

A stateless event stream will give you the opportunity to work with the
current score from the latest round. But for tracking their total, you’ll need to
keep the state of all their previous scores.

This scenario leads us to our first example of a stateful operation in Kafka
Streams. For this example we’re going to use a reduce. A reduce operation
takes multiple values and reduces or merges them into a single result. Let’s
look at an illustration to help understand how this process works:

Figure 7.1. A reduce takes several inputs and merges them into a single result of the same type



As you can see in the illustration, the reduce operation takes five numbers
and "reduces" them down to a single result by summing the numbers
together. So Kafka Streams takes an unbounded stream of scores and
continues to sum them per player. At this point we’ve described the reduce
operation itself, but there’s some additional information we need to cover
regarding how Kafka Streams sets up to perform the reduce.

When describing our online poker game scenario, I mentioned that there are
individual players, so it stands to reason that we want to calculate total scores
for each individual. But we aren’t guaranteed the order of the incoming
player scores, so we need the ability to group them. Remember Kafka works
with key-value pairs, so we’ll assume the incoming records take the form of
playerId-score for the key-value pair.

So if the key is the player-id, then all Kafka Streams needs to do is bucket or
group the scores by the id and you’ll end up with the summed scores per
player. It will probably be helpful for us to view an illustration of the
concept:

Figure 7.2. Grouping the scores by player-id ensures we only sum the scores for the individual
players



So by grouping the scores by player-id, you are guaranteed to only sum the
scores for each player. This group-by functionality in Kafka Streams is
similar to the SQL group-by when performing aggregation operations on a
database table.

  Note

At this point going forward, I’m not going to show the basic setup code
needed i.e. creating the StreamBuilder instance and serdes for the record
types. You’ve learned in the previous chapter how these components fit into
an application, so you can refer back if you need to refresh your memory.

Now let’s see the reduce in action with Kafka Streams

Listing 7.3. Performing a reduce in Kafka Streams to show running total of scores in an online
poker game

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",

        Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream

        .groupByKey() #1

        .reduce(Double::sum,  #2

                Materialized.with(Serdes.String(), Serdes.Double()))

        .toStream()  #3



        .to("total-scores",

                Produced.with(Serdes.String(), Serdes.Double())); 

This Kafka Streams application results in key-value pairs like "Neil, 650" and
it’s a continual stream of summed scores, continually updated.

Looking over the code you can see you first perform a groupByKey call. It’s
important to note that grouping by key is a prerequisite for stateful
aggregations in Kafka Streams. So what do you do when there is no key or
you need to derive a different one? For the case of using a different key, the
KStream interface provides a groupBy method that accepts a KeyValueMapper
parameter that you use to select a new key. We’ll see an example of selecting
a new key in the next example.

7.2.1 Group By details

We should take a quick detour to briefly discuss the return type of the group-
by call, which is a KGroupedStream. The KGroupedStream is an intermediate
object and it provides methods aggregate, count, and reduce. In most cases,
you won’t need to keep a reference to the KGroupedStream, you’ll simply
execute the method you need and its existence is transparent to you.

What are the cases when you’d want to keep a reference to the
KGroupedStream? Any time you want to perform multiple aggregation
operations from the same key grouping is a good example. We’ll see one
when we cover windowing later on. Now let’s get back to the discussion of
our first stateful operation.

Immediately after the groupByKey call we execute reduce, and as I’ve
explained before the KGroupedStream object is transparent to us in this case.
The reduce method has overloads taking anywhere from one to three
parameters, in this case we’re using the two parameter version which accepts
a Reducer interface and a Materialized configuration object as parameters.
For the Reducer you’re using a method reference to the static method
Double.sum which sums the previous total score with the newest score from
the game.

The Materialized object provides the serdes used by the state store for



(de)serializing keys and values. Under the covers, Kafka Streams uses local
storage to support stateful operations. The stores store key-value pairs as byte
arrays, so you need to provide the serdes to serialize records on input and
deserialize them on retrieval. We’ll get into the details of state stores in an
upcoming section.

After reduce you call toStream because the result of all aggregation
operations in Kafka Streams is a KTable object (which we haven’t covered
yet, but we will in the next chapter), and to forward the aggregation results to
downstream operators we need to convert it to a KStream.

Then we can send the aggregation results to an output topic via a sink node
represented by the to operator. But stateful processors don’t have the same
forwarding behavior as stateless ones, so we’ll take a minute here to describe
that difference.

Kafka Streams provides a caching mechanism for the results of stateful
operations. Only when Kafka Streams flushes the cache are stateful results
forwarded to downstream nodes in the topology. There are two scenarios
when Kafka Streams will flush the cache. The first when the cache is full,
which by default is 10MB, or secondly when Kafka Streams commits, which
is every thirty seconds with default settings. An illustration of this will help
to cement your understanding of how the caching works in Kafka Streams.

Figure 7.3. Caching intermediate results of an aggregation operation



So from looking at the illustration you can see that the cache sits in front
forwarding records and as a result you won’t observe several of the
intermediate results, but you will always see the latest updates at the time of a
cache flush. This also has the effect of limiting writes to the state store and its
associated changelog topic. Changelog topics are internal topics created by
Kafka Streams for fault tolerance of the state stores. We’ll cover changelog
topics in an upcoming section.

  Tip

If you want to observe every result of a stateful operation you can disable the
cache by setting the StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG
setting to 0.



7.2.2 Aggregation vs. reducing

At this point you’ve learned about one stateful operator, but we have another
option for stateful operations. If you noticed with reduce, since you are
merging record values, it’s expected that a reduce returns the same type as a
result. But sometimes you’ll want to build a different result type and for that
you’ll want to use the aggregate operation. The concept behind an
aggregation is similar, but you have the flexibility to return a type different
from the record value. Let’s look at an example to answer why you would use
aggregate over reduce.

Imagine you work for ETrade you need to create an application that tracks
stock transactions of individual customers, not large institutional traders. You
want to keep a running tally of the total volume of shares bought and sold,
the dollar volume of sales and purchases, and the highest and lowest price
seen at any point.

To provide this type of information, you’ll need to create a custom data
object. This where the aggregate comes into play, because it allows for a
different return type from the incoming value. In this case the incoming
record type is singular stock transaction object, but the aggregation result will
be a different type containing the required information listed in the previous
paragraph.

Since we’ll need to put this custom object in a state store which requires
serialization, we’ll create a Protobuf schema so we can generate it and
leverage utility methods for creating Protobuf serdes . Since this application
has detailed aggregation requirements, we’ll implement the Aggregator<K,
V, VR> interface as a concrete class which will allow us to test it
independently.

Let’s take a look at part of the aggregator implementation. Since this class
contains some logic not directly related to learning Kafka Streams, I’m only
going to show partial information on the class, to view full details, consult the
source code and look for the
bbejeck.chapter_7.aggregator.StockAggregator class.

Listing 7.4. Aggregator implementation used for creating stock transaction summaries



public class StockAggregator implements Aggregator<String,

                                             Transaction,

                                             Aggregate> {

    @Override

    public Aggregate apply(String key,

                          Transaction transaction,

                          Aggregate aggregate) { #1

   Aggregate.Builder currAggregate =

                                aggregate.toBuilder(); #2

    double transactionDollars =

           transaction.getNumberShares()

         * transaction.getSharePrice(); #3

    if (transaction.getIsPurchase()) {       #4

        long currentPurchaseVolume =

             currAggregate.getPurchaseShareVolume();

        currAggregate.setPurchaseShareVolume(

                      currentPurchaseVolume

                     + transaction.getNumberShares());

        double currentPurchaseDollars =

                currAggregate.getPurchaseDollarAmount();

        currAggregate.setPurchaseDollarAmount(

                      currentPurchaseDollars

                      + transactionDollars);

    }

    //Further details left out for clarity

I’m not going to go into much detail about the Aggregator instance here,
since the main point of this section how to build a Kafka Streams aggregation
application, the particulars of how you implement the aggregation is going to
vary from case to case. But from looking at this code, you can see how we’re
building up the transactional data for a given stock. Now let’s look at how
we’ll plug this Aggregator implementation into a Kafka Streams application
to capture the information. The source code for this example can be found in
bbejeck.chapter_7.StreamsStockTransactionAggregations

  Note



There’s some details I’m going to leave out of the source code as presented in
the book, printing records to the console for example. Going forward our
Kafka Streams applications will get more complex and it will be easier to
learn the essential part of the lesson if I only show the key details. Rest
assured the source code is complete and will be thoroughly tested to ensure
that the examples compile and run.

Listing 7.5. Kafka Streams aggregation

 KStream<String, Transaction> transactionKStream =

    builder.stream("stock-transactions",

                   Consumed.with(stringSerde, txnSerde)); #1

transactionKStream.groupBy((key, value) -> value.getSymbol(), #2

      Grouped.with(Serdes.String(), txnSerde))

  .aggregate(() -> initialAggregate, #3

            new StockAggregator(),

            Materialized.with(stringSerde, aggregateSerde))

  .toStream() #4

  .peek((key, value) -> LOG.info("Aggregation result {}", value))

  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde)); 

In annotation one, this application starts out in familiar territory, that is
creating the KStream instance by subscribing it to a topic and providing the
serdes for deserialization. I want to call your attention to annotation two, as
this is something new.

You’ve seen a group-by call in the reduce example, but in this example the
inbound records are keyed by the client-id and we need to group records by
the stock ticker or symbol. So to accomplish the key change, you use
GroupBy which takes a KeyValueMapper, which is a lambda function in our
code example. In this case the lambda returns the ticker symbol in the record
to enable to proper grouping.

Since the topology changes the key, Kafka Streams needs to repartition the
data. I’ll discuss repartitioning in more detail in the next section, but for now
it’s enough to know that Kafka Streams takes care of it for you.

Listing 7.6. Kafka Streams aggregation



transactionKStream.groupBy((key, value) -> value.getSymbol(),

      Grouped.with(Serdes.String(), txnSerde))

  .aggregate(() -> initialAggregate, #1

            new StockAggregator(),

            Materialized.with(stringSerde, aggregateSerde))

  .toStream() #2

  .peek((key, value) -> LOG.info("Aggregation result {}", value))

  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde)); #3

At annotation three is where we get to the crux of our example, applying the
aggregation operation. Aggregations are little different from the reduce
operation in that you need to supply an initial value.

Providing an initial value is required, because you need an existing value to
apply for the first aggregation as the result could possibly be a new type.
With the reduce, if there’s no existing value, it simply uses the first one it
encounters.

Since there’s no way for Kafka Streams to know what the aggregation will
create, you need to give it an initial value to seed it. In our case here it’s an
instantiated StockAggregateProto.Aggregate object, with all the fields
uninitialized.

The second parameter you provide is the Aggregator implementation, which
contains your logic to build up the aggregation as it is applied to each record
it encounters. The third parameter, which is optional, is a Materialized
object which you’re using here to supply the serdes required by the state
store.

The final parts of the application are used to covert the KTable resulting from
the aggregation to a KStream so that you can forward the aggregation results
to a topic. Here you’re also using a peek operate before the sink processor to
view results without consuming from a topic. Using a peek operator this way
is typically for development or debugging purposes only.

  Note

Remember when running the examples that Kafka Streams uses caching so
you won’t immediately observe results until the cache gets flushed either



because it’s full or Kafka Streams executes a commit.

So at this point you’ve learned about the primary tools for stateful operations
in the Kafka Streams DSL, reduce and aggregation. There’s another stateful
operation that deserves mention here and that is the count operation. The
count operation is a convenience method for a incrementing counter
aggregation. You’d use the count when you simply need a running tally of a
total, say the number of times a user has logged into your site or the total
number of readings from an IoT sensor. We won’t show an example here, but
you can see one in action in the source code at
bbejeck/chapter_7/StreamsCountingApplication.

In this previous example here where we built stock transaction aggregates, I
mentioned that changing the key for an aggregation requires a repartitioning
of the data, let’s discuss this in a little more detail in the next section.

7.2.3 Repartitioning the data

In the aggregation example we saw how changing the key required a
repartition. Let’s have a more detailed conversation on why Kafka Streams
repartition and how it works. Let’s talk about the why first.

We learned in a previous chapter that the key of a Kafka record determines
the partition. When you modify or change the key, there’s a strong
probability it belongs on another partition. So, if you’ve changed the key and
you have a processor that depends on it, an aggregation for example, Kafka
Streams will repartition the data so the records with the new key end up on
the correct partition. Let’s look at an illustration demonstrating this process in
action:

Figure 7.4. Repartitioning: changing the original key to move records to a different partition





As you can see here, repartitioning is nothing more than producing records
out to a topic and then immediately consuming them again. When the Kafka
Streams embedded producer writes the records to the broker, it uses the
updated key to select the new partition. Under the covers, Kafka Streams
inserts a new sink node for producing the records and a new source node for
consuming them, here’s an illustration showing the before and after state
where Kafka Streams updated the topology:

Figure 7.5. Updated topology where Kafka Streams adds a sink and source node for
repartitioning of the data

The newly added source node creates a new sub-topology in the overall
topology for the application. A sub-topology is a portion of a topology that
share a common source node. Here’s an updated version of the repartitioned
topology demonstrating the sub-topology structures:



Figure 7.6. Adding a sink and source node for repartitioning creates a new sub-topology

So any processors that come after the new source node are part of the new
sub-topology.

What is the determining factor that causes Kafka Streams to repartition? If
you have a key changing operation and there’s a downstream operation that
relies on the key, such as a groupByKey, aggregation, or join (we’ll get to
joins soon). Otherwise, if there are no downstream operations dependent on
the key, Kafka Streams will leave the topology as is. Let’s look a couple of
examples to help clarify this point:

Listing 7.7. Examples of when repartitioning is needed

myStream.groupBy(...).reduce(...)... #1



myStream.map(...).groupByKey().reduce(...)... #2

filteredStream = myStream.selectKey(...).filter(...); #3

....

filteredStreaam.groupByKey().aggregate(...)... #3

What these code examples demonstrate is when you execute an operation
where you could change the key, Kafka Streams sets an internal boolean flag,
repartitionRequired, to true. Since Kafka Streams can’t possibly know if
you changed the key or not, when it finds an operation dependent on the key
and the internal flag evaluates to true, it will automatically repartition the
data.

On the other hand, even if you change the key, but don’t do an aggregation or
join, the topology remains the same:

Listing 7.8. Examples of when repartitioning is not needed

myStream.map(...).peek(...).to(...); #1

myStream.selectKey(...).filter(...).to(...); #2

In these examples, even if you updated the key, it doesn’t affect the results of
the downstream operators. For example filtering a record solely depends on if
the predicate evaluates to true or not. Additionally, since these KStream
instances write out to a topic, the records with updated keys will end up on
the correct partition.

So the bottom line is to only use key-changing operations (map, flatMap,
transform) when you actually need to change the key. Otherwise it’s best to
use processors that only work on values i.e. mapValues, flatMapValues etc.
this way Kafka Streams won’t needlessly repartition the data. There are
overloads to XXXValues methods that provide *access* to the key when
updating a value, but changing the key in this case will lead to undefined
behavior.

  Note

The same is true when grouping records before an aggregation. Only use



groupBy when you need to change the key, otherwise favor groupByKey.

It’s not that you should avoid repartitioning, but since it adds processing
overhead it is a good idea to only do it when required.

Before we wrap up coverage of repartitioning we should talk about an
important additional subject; inadvertently creating redundant repartition
nodes and ways to prevent it. Let’s say you have an application with two
input streams. You need to perform an aggregation on the first stream as well
as join it with the second stream. Your code would look something like this:

Listing 7.9. Changing the key then aggregate and join

// Several details omitted for clarity

KStream<String, String> originalStreamOne = builder.stream(...);

KStream<String, String> inputStreamOne = originalStreamOne.selectKey(...); 

KStream<String, String> inputStreamTwo = builder.stream(...); #2

inputStreamOne.groupByKey().count().toStream().to(...); #3

KStream<String, String> joinedStream =       #4

  inputStreamTwo.join(inputStreamOne,

                (v1, v2)-> v1+":"+v2,

                JoinWindows.ofTimeDifferenceWithNoGrace(...),

                StreamJoined.with(...);

....

This code example here is simple enough. You take the originalStreamOne
and need you to change the key since you’ll need to do an aggregation and a
join with it. So you use a selectKey operation, which sets the
repartitionRequired flag for the returned KStream. Then you perform a
count() and then a join with inputStreamOne. What is not obvious here is
that Kafka Streams will automatically create two repartition topics, one for
the groupByKey operator and the other for the join, but in reality you only
need one repartition.

It will help to fully understand what’s going on here by looking at the



topology for this example. Notice there are two reparititions, but you only
need the first one where the key is changed.

Figure 7.7. Redundant repartition nodes due to a key changing operation occurring previously in
the topology

When you used the key-changing operation on originalStreamOne the
resulting KStream, inputStreamOne, now carries the repartitionRequired
= true setting. So any KStream resulting from inputStreamOne that uses a



processor involving the key will trigger a repartition.

What can you do to prevent this from happening? There are two choices here;
manually repartition earlier which sets the repartition flag to false, so any
subsequent streams won’t trigger a repartition. The other option is let Kafka
Streams handle it for you by enabling optimizations. Let’s talk about using
the manual approach first.

  Note

While repartition topics do take up disk space, Kafka Streams actively purges
records from them, so you don’t need to be concerned with the size on disk,
but avoiding redundant repartitions is still a good idea.

7.2.4 Proactive Repartitioning

For the times when you might need to repartition the data yourself, the
KStream API provides the repartition method. Here’s how you use it to
manually repartition after a key change:

Listing 7.10. Changing the key, repartitioning then performing an aggregation and a join

//Details left out of this example for clarity

KStream<String, String> originalStreamOne = builder.stream(...);

KStream<String, String> inputStreamOne = originalStreamOne.selectKey(...); 

KStream<String, String> inputStreamTwo = builder.stream(...);

KStream<String, String> repartitioned =

  inputStreamOne.repartition(Repartitioned   #2

                .with(stringSerde, stringSerde)

                .withName("proactive-repartition"));

repartitioned.groupByKey().count().toStream().to(...); #3

KStream<String, String> joinedStream = inputStreamTwo.join(...) #4

.....



The code here has only one change, adding repartition operation before
performing the groupByKey. What happens as a result is Kafka Streams
creates a new sink-source node combination that results in a new
subtopology. Let’s take a look at the topology now and you’ll see the
difference compared to the previous one:

Figure 7.8. Now only one repartition node due to a proactive repartition also allows for more
stateful operations without repartitioning

This new sub-topology ensures that the new keys end up on the correct



partition, and equally as important, the returned KStream object has the
needsRepartition flag set to false. As a result, all downstream stateful
operations that are descendants of this KStream object don’t trigger any
further repartitions (unless the one of them changes the key again).

The KStream.repartition method accepts one parameter, the
Repartitioned configuration object. Repartitioned allows you to specify:

1. The serdes for the key and value
2. The base name for the topic
3. The number of partitions to use for the topic
4. A StreamPartitioner instance should you need customize the

distribution of records to partitions

Let’s pause on our current discussion and review some of these options.
Since I’ve already covered serdes and the StreamPartitioner in the previous
chapter, I’m going to leave them out here.

Providing a base-name for the repartition topic is always a good idea. I’m
using the term base-name because Kafka Streams takes the name you provide
and adds a prefix of "<application-id>-" which comes from the value you
supplied in the configs and a suffix of "-repartition".

So given an application-id of "streams-financial" and a name of "stock-
aggregation" results in a repartition topic named "streams-financial-stock-
aggregation-repartition". The reason it’s a good idea to always provide a
name is two fold. First having a meaningful topic name is always helpful to
understand its role when you list the topics on your Kafka cluster.

Secondly, and probably more important, is the name you provide remains
fixed even if you change you topology upstream of the repartition.
Remember, when you don’t provide names for processors, Kafka Streams
generates names for them, and part of the name includes a zero padded
number generated by a global counter.

So if you add or remove operators upstream of your repartition operation and
you haven’t explicitly named it, its name will change due to changes in
global counter. This name shift can be problematic when re-deploying an



existing application. I’ll talk more about importance of naming stateful
components of a Kafka Streams application in an upcoming section.

  Note

Although there are four parameters for the Repartitioned object, you don’t
have to supply all of them. You can use any combination of the parameters
that suit your needs.

Specifying the number of partitions for the repartition topic is particularly
useful in two cases: co-partitioning for joins and increasing the number of
tasks to enable higher throughput. Let’s discuss the co-partitioning
requirement first. When performing joins, both sides must have the same
number of partitions (we’ll discuss why this is so in the upcoming joins
section). So by using the repartition operation, you can change the number
partitions to enable a join, without needing to change the original source
topic, keeping the changes internal to the application.

7.2.5 Repartitioning to increase the number of tasks

If you recall from the previous chapter, the number of partitions drive the
number of tasks which ultimately determines the amount of active threads a
application can have. So one way to increase the processing power is to
increase the number of partitions, since that leads to more tasks and ultimate
more threads that can process records. Keep in mind that tasks are evenly
assigned to all applications with the same id, so this approach to increase
throughput is particularly useful in an environment where you can elastically
expand the number of running instances.

While you could increase the number of partitions for the source topic, this
action might not always be possible. The source topic(s) of a Kafka Streams
application are typically "public" meaning other developers and applications
use that topic and in most organizations, changes to shared infrastructure
resources can be difficult to get done.

Let’s look at an example of performing a repartition to increase the number
of tasks (example found in bbejeck.chapter_7.RepartitionForThroughput)



Listing 7.11. Increasing the number of partitions for a higher task count

KStream<String, String> repartitioned =

initialStream.repartition(Repartitioned

            .with(stringSerde, stringSerde)

            .withName("multiple-aggregation")

            .withNumberOfPartitions(10)); #1

Now this application will have 10 tasks which means there can up to 10
stream threads processing records driven by the increase in the number of
partitions.

You need to keep in mind however, that adding partitions for increased
throughput will work best when there is a fairly even distribution of keys. For
example, if seventy percent of you key space lands on one partition,
increasing the number of partitions will only move those keys to a new
partition. But since the overall *distribution* of the keys is relatively
unchanged, you won’t see any gains in throughput, since one partition, hence
one task, is shouldering most of the processing burden.

So far we’ve covered how you can proactively repartition when you’ve
changed the key. But this requires you to know when to repartition and
always remember to do so, but is there a better approach, maybe have Kafka
Streams take care of this for you automatically? Well there is a way, by
enabling optimizations.

7.2.6 Using Kafka Streams Optimizations

While you’re busy creating a topology with various methods, Kafka Streams
builds a graph or internal representation of it under the covers. You can also
consider the graph to be a "logical representation" of your Kafka Streams
application. In your code, when you execute StreamBuilder#build method,
Kafka Streams traverses the graph and builds the final or physical
representation of the application.

At a high level, it works like this: as you apply each method, Kafka Streams
adds a "node" to the graph as depicted in the following illustration:



Figure 7.9. Each call to a KStream method adds a node to the graph

When you make an additional method call, the previous "node" becomes the
parent of the current one. This process continues until you finish building
your application.

Along the way, Kafka Streams will record metadata about the graph it’s
building, specifically it records if it has encountered a repartition node. Then
when use the StreamsBuilder#build method to create the final topology,
Kafka Streams will examine the graph for redundant repartition nodes, and if
found, it will re-write your topology to have only one! This is opt-in behavior
for Kafka Streams, so to get this feature working, you’ll need to enable
optimizations by doing the following:

Listing 7.12. Enabling optimizations in Kafka Streams

streamProperties.put(StreamsConfig.TOPOLOGY_OPTIMIZATION_CONFIG,

                     StreamsConfig.OPTIMIZE);   #1

builder.build(streamProperties);  #2

So to enable optimizations you need to first set the proper configuration



because by default it is turned off. The second step is to pass the properties
object to the StreamBuilder#build method. Then Kafka Streams will
optimize your repartition nodes when building the topology.

  Note

If you have more than one key-changing operation with a stateful one further
downstream the optimizing will not remove that repartition. It only takes
away redundant repartitions for single key-changing processor.

But when you enable optimizations Kafka Streams automatically updates the
topology by removing the three repartition nodes preceding the aggregation
and inserts a new single repartition node immediately after the key-changing
operation which results in a topology that looks like the illustration in the
"Proactive Repartitioning" section.

So with a configuration setting and passing the properties to the
StreamBuilder you can automatically remove any unnecessary repartitions!
The decision on which one to use really comes down to personal preference,
but by enabling optimizations it guards against you overlooking where you
may need it.

Now we’ve covered repartitioning, let’s move on to our next stateful
operation, joins

7.3 Stream-Stream Joins

Sometimes you may need to combine records from different event streams to
"complete the picture" of what your application is tasked with completing.
Say we have stream of purchases with the customer ID as the key and a
stream of user clicks and we want to join them so we can make connection
between pages visted and purchases. To do this in Kafka Streams you use a
join operation. Many of you readers are already familiar with the concept of a
join from SQL and the relational database world and the concept is the same
in Kafka Streams.



Let’s look at an illustration to demonstrate the concept of joins in Kafka
Streams

Figure 7.10. Two Streams with the same keys but different values

From looking at the graphic above, there are two event streams that use the
same values for the key, a customer id for example, but the values are
different. In one stream the values are purchases and the other stream the
values are links to pages the user clicked visiting the site.

  Important

Since joins depend on identical keys from different topics residing on the
same partition, the same rules apply when it comes to using a key-changing



operation. If a KStream instance is flagged with repartitionRequired,
Kafka Streams will partition it before the join operation. So all the
information in the repartitioning section of this chapter applies to joins as
well.

In this section, you’ll take different events from two streams with the same
key, and combine them to form a new event. The best way to learn about
joining streams is to look at a concrete example, so we’ll return to the world
of retail. Consider a big box retailer that sells just about anything you can
imagine. In an never ending effort to lure more customers in the store, the
retailer partners with a national coffee house and it embeds a cafe in each
store.

To encourage customers to come into the store, the retailer has started a
special promotion where if you are a member of the customer-club and you
buy a coffee drink from the embedded cafe and a purchase in the store (in
either order), they’ll automatically earn loyalty points at the completion of
your second purchase. The customers can redeem those points for items from
either store. It’s been determined that purchases must made within 30
minutes of each other to qualify for the promotion.

Since the main store and the cafe run on separate computing infrastructure,
the purchase records are in two event streams, but that’s not an issue as they
both use the customer id from the club membership for the key, so it’s a
simply a case of using a stream-stream join to complete the task.

7.3.1 Implementing a stream-stream join

The next step is to perform the actual join. So let’s show the code for the join,
and since there are a couple of components that make up the join, I’ll explain
them in a section following the code example. The source code for this
example can be found in
src/main/java/bbejeck/chapter_7/KafkaStreamsJoinsApp.java).

Listing 7.13. Using the join() method to combine two streams into one new stream based on keys
of both streams

// Details left out for clarity



KStream<String, CoffeePurchase>

                     coffeePurchaseKStream = builder.stream(...) #1

KStream<String, RetailPurchase>

                     retailPurchaseKStream = builder.stream(...) #1

ValueJoiner<CoffeePurchase,

            RetailPurchase,

            Promotion> purchaseJoiner =

                                          new PromotionJoiner(); #2

JoinWindows thirtyMinuteWindow =

     JoinWindows.ofTimeDifferenceWithNoGrace(Duration.minutes(30)); 

KStream<String, Promotion> joinedKStream =

    coffeePurchaseKStream.join(retailPurchaseKStream, #4

                               purchaseJoiner,

                               thirtyMinuteWindow,

                                StreamJoined.with(stringSerde, #5

                                                  coffeeSerde,

                                                  storeSerde)

                                      .withName("purchase-join")

                                      .withStoreName("join-stores"));

You supply four parameters to the KStream.join method:

retailPurchaseKStream — The stream of purchases from to join with.
purchaseJoiner — An implementation of the ValueJoiner<V1, V2,
R> interface. ValueJoiner accepts two values (not necessarily of the
same type). The ValueJoiner.apply method performs the
implementation-specific logic and returns a (possibly new) object of
type R. In this example, purchaseJoiner will add some relevant
information from both Purchase objects, and it will return a
PromotionProto object.
thirtyMinuteWindow — A JoinWindows instance. The
JoinWindows.ofTimeDifferenceWithNoGrace method specifies a
maximum time difference between the two values to be included in the
join. Specifically the timestamp on the secondary stream,
retailPurchaseKStream can only be a maximum of 30 minutes before
or after the timestamp of a record from the coffeePurchaseKStream
with the same key.
A StreamJoined instance — Provides optional parameters for



performing joins. In this case, it’s the key and the value Serde for the
calling stream, and the value Serde for the secondary stream. You only
have one key Serde because, when joining records, keys must be of the
same type. The withName method provides the name for the node in the
topology and the base name for a repartition topic (if required). The
withStoreName is the base name for the state stores used for the join. I’ll
cover join state stores usage in an upcoming section.

  Note

Serde objects are required for joins because join participants are materialized
in windowed state stores. You provide only one Serde for the key, because
both sides of the join must have a key of the same type.

Joins in Kafka Streams are one of the most powerful operations you can
perform and it’s also one the more complex ones to understand. Let’s take a
minute to dive into the internals of how joins work.

7.3.2 Join internals

Under the covers, the KStream DSL API does a lot of heavy lifting to make
joins operational. But it will be helpful for you to understand how joins are
done under the covers. For each side of the join, Kafka Streams creates a join
processor with its own state store. Here’s an illustration showing how this
looks conceptually:

Figure 7.11. In a Stream-Stream join both sides of the join have a processor and state store



When building the processor for the join for each side, Kafka Streams



includes the name of the state store for the reciprocal side of the join - the left
side gets the name of the right side store and the right side processor contains
the left store name. Why does each side contain the name of opposite side
store? The answer gets at the heart of how joins work in Kafka Streams. Let’s
look at another illustration to demonstrate:

Figure 7.12. Join processors look in the other side’s state store for matches when a new record
arrives



When a new record comes in (we’re using the left-side processor for the
coffeePurchaseKStream) the processor puts the record in its own store, but
then looks for a match by retrieving the right-side store (for the
retailPurchaseKStream) by name. The processor retrieves records with the
same key and within the time range specifed by the JoinWindows.

Now, the final part to consider is if a match is found. Let’s look at one more



illustration to help us see what’s going on:

Figure 7.13. When matching record(s) is found the processor executes the joiner’s apply method
with the key, its own record value and the value from the other side

So now, after an incoming record finds a match by looking in the store from
the other join side, the join processor (the coffeePurchaseKStream in our
illustration) takes the key and the value from its incoming record, the value
for each record it has retrieved from the store and executes the
ValueJoiner.apply method which creates the join record specified by the
implementation you’ve provided. From there the join processor forwards the
key and join result to any down stream processors.

Now that we’ve discussed how joins operate internally let’s discuss in more
detail some of the parameters to the join

7.3.3 ValueJoiner



To create the joined result, you need to create an instance of a
ValueJoiner<V1, V2, R>. The ValueJoiner takes two objects, which may
or may not be of the same type, and it returns a single object, possibly of a
third type. In this case, ValueJoiner takes a CoffeePurchase and a
RetailPurchase and returns a Promotion object. Let’s take a look at the code
(found in src/main/java/bbejeck/chapter_7/joiner/PromotionJoiner.java).

Listing 7.14. ValueJoiner implementation

public class PromotionJoiner

     implements ValueJoiner<CoffeePurchase,

                            RetailPurchase,

                            Promotion> {

    @Override

    public Promotion apply(

            CoffeePurchase coffeePurchase,

            RetailPurchase retailPurchase) {

    double coffeeSpend = coffeePurchase.getPrice(); #1

    double storeSpend = retailPurchase.getPurchasedItemsList() #2

            .stream()

            .mapToDouble(pi -> pi.getPrice() * pi.getQuantity()).sum();

    double promotionPoints = coffeeSpend + storeSpend;  #3

    if (storeSpend > 50.00) {

        promotionPoints += 50.00;

    }

    return Promotion.newBuilder()  #4

            .setCustomerId(retailPurchase.getCustomerId())

            .setDrink(coffeePurchase.getDrink())

            .setItemsPurchased(retailPurchase.getPurchasedItemsCount())

            .setPoints(promotionPoints).build();

}

To create the Promotion object, you extract the amount spent from both sides
of the join and perform a calculation resulting in the total amount of points to
reward the customer. I’d like to point out that the ValueJoiner interface only
has one method, apply, so you could use a lambda to represent the joiner. But
in this case you create a concrete implementation, because you can write a
separate unit test for the ValueJoiner. We’ll come back this approach in the
chapter on testing.



  Note

Kafka Streams also provides a ValueJoinerWithKey interface which provides
access to the key for calculating the value of the join result. However the key
is considered read-only and making changes to it in the joiner
implementation will lead undefined behavior.

7.3.4 Join Windows

The JoinWindows configuration object plays a critical role in the join process;
it specifies the difference between the timestamps of records from both
streams to produce a join result.

Let’s refer to the following illustration as an aid to understand the
JoinWindows role.

Figure 7.14. The JoinWindows configuration specifies the max difference (before or after) from
the timestamp of the calling side the secondary side can have to create a join result.



More precisely the JoinWindows setting is the maximum difference, either
before or after, the secondary (other) side’s timestamp can from the primary
side timestamp to create a join result. Looking at the example in listing XXX,
the join window there is set for thirty minutes. So let’s say a record from the
coffeeStream has a timestamp of 12:00 PM, for a corresponding record in
the storeStream to complete the join, it will need a timestamp from 11:30
AM to 12:30 PM.

There are two additional JoinWindows() methods are available after and
before, which you can use to specify the timing and possibly the order of
events for the join.

Let’s say you’re fine with the opening window of the join at thirty minutes
but you want the closing window to be shorter, say five minutes. You’d use
the JoinWindows.after method (still using the example in listing XXX) like



so

Listing 7.15. Using the JoinWindows.after method to alter the closing side of the join window

coffeeStream.join(storeStream,...,

    thirtyMinuteWindow.after(Duration.ofMinutes(5))....

Here the opening window stays the same, the storeStream record can have a
timestamp of at least 11:30 AM , but the closing window is shorter, the latest
it can be is now 12:05 PM.

The JoinWindows.before method works in a similar manner, just in the
opposite direction. Let’s say now you want to shorten the opening window,
so you’ll now use this code:

Listing 7.16. The JoinWindows.before method changes the opening side of the join window

coffeeStream.join(storeStream,...,

    thirtyMinuteWindow.before(Duration.ofMinutes(5))....

Now you’ve changed things so the timestamp of the storeStream record can
be at most 5 minutes before the timestamp of a coffeeStream record. So the
acceptable timestamps for a join (storeStream records) now start at 11:55
AM but end at 12:30 PM. You can also use JoinWindows.before and
JoinWindows.after to specify the order of arrival of records to perform a
join.

For example to set up a join when a store purchase only happens within 30
minutes after a cafe purchase you would use
JoinWindows.of(Duration.ofMinutes(0).after(Duration.ofMinutes(30)

and to only consider store purchases before you would use
JoinWindows.of(Duration.ofMinutes(0).before(Duration.ofMinutes(30))

  Important

In order to perform a join in Kafka Streams, you need to ensure that all join
participants are co-partitioned, meaning that they have the same number of
partitions and are keyed by the same type. Co-partitioning also requires all



Kafka producers to use the same partitioning class when writing to Kafka
Streams source topics. Likewise, you need to use the same
StreamPartitioner for any operations writing Kafka Streams sink topics via
the KStream.to() method. If you stick with the default partitioning
strategies, you won’t need to worry about partitioning strategies.

As you can see the JoinWindows class gives you plenty of options to control
joining two streams. It’s important to remember that it’s the timestamps on
the records driving the join behavior. The timestamps can be either the ones
set by Kafka (broker or producer) or they can be embedded in the record
payload itself. To use a timestamp embedded in the record you’ll need to
provide a custom TimestampExtractor and I’ll cover that as well as
timestamp semantics in the next chapter.

7.3.5 StreamJoined

The final paramter to discuss is the StreamJoined configuration object. With
StreamJoined you can provide the serdes for the key and the values involved
in the join. Providing the serdes for the join records is always a good idea,
because you may have different types than what has been configured at the
application level. You can also name the join processor and the state stores
used for storing record lookups to complete the join. The importance of
naming state stores is covered in the upcoming the section called “Naming
Stateful operations” section.

Before we move on from joins let’s talk about some of the other join options
available.

7.3.6 Other join options

The join in listing for the current example is an inner join. With an inner join,
if either record isn’t present, the join doesn’t occur, and you don’t emit a
Promotion object. There are other options that don’t require both records.
These are useful if you need information even when the desired record for
joining isn’t available.

7.3.7 Outer joins



Outer joins always output a record, but the result may not include both sides
of the join. You’d use an outer join when you wanted to see a result
regardless of a successful join or not. If you wanted to use an outer join for
the join example, you’d do so like this:

coffeePurchaseKStream.outerJoin(retailPurchaseKStream,..)

An outer join sends a result that contains records from either side or both. For
example the join result could be left+right, left+null, or null+right,
depending on what’s present. The following illustration demonstrates the
three possible outcomes of the outer join.

Figure 7.15. Three outcomes are possible with outer joins: only the calling stream’s event, both
events, and only the other stream’s event.



7.3.8 Left-outer join

A left-outer join also always produces a result. But the difference from the
outer-join is the left or calling side of the join is always present in the result,
left+right or left+null for example. You’d use a left-outer join when you
consider the left or calling side stream records essential for your business
logic. If you wanted to use a left-outer join in listing 7.13, you’d do so like
this:

coffeePurchaseKStream.leftJoin(retailPurchaseKStream..)

Figure 7.17 shows the outcomes of the left-outer join.

Figure 7.16. Two outcomes are possible with the left-outer join left and right side or left and null.

At this point you’ve learned the different join types, so what are the cases
when you need to use them? Let’s start with the current join example. Since
you are determining a promotional reward based on the purchase of two
items, each in their own stream an inner-join makes sense. If there is no
corresponding purchase on the other side, then you don’t have an actionable
result, so to emit nothing is desired.



For cases where one side of the join is critical and the other is useful, but not
essential then a left-side join is a good choice where you’d use the critical
stream on the left or calling side. I’ll cover an example when we get to
stream-table joins in an upcoming section.

Finally, for a case where you have two streams where both sides enhance
each other, but each one is important on its own, then an outer join fits the
bill. Consider IoT, where you have two related sensor streams. Combining
the sensor information provides you with a more complete picture but you
want information from either side if it’s available.

In the next section, let’s go into the details of the workhorse of stateful
operations, the state store.

7.4 State stores in Kafka Streams

So far, we’ve discussed the stateful operations in the Kafka Streams DSL
API, but glossed over the underlying storage mechanism those operations
use. In this section, we’ll look at the essentials of using state stores in Kafka
Streams and the key factors related to using state in streaming applications in
general. This will enable you to make practical choices when using state in
your Kafka Streams applications.

Before I go into any specifics, let’s cover some general information. At a
high-level, the state stores in Kafka Streams are key-value stores and they fall
into two categories, persistent and in-memory. Both types are durable due to
the fact that Kafka Streams uses changelog topics to back the stores. I’ll talk
more about changelog topics soon.

Persistent stores store their records in local disk, so they maintain their
contents over restarts. The in-memory stores place records well, in memory,
so they need to be restored after a restart. Any store that needs restoring will
use the changelog topic to accomplish this task. But to understand how a state
store leverages a changelog topic for restoration, let’s take a look at how
Kafka Streams implements them.

In the DSL, when you apply a stateful operation to the topology, Kafka



Streams creates a state store for the processor (persistent are the default type).
Along with the store, Kafka Streams also creates a changelog topic backing
the store at the same time. As records are written the store, they are also
written to the changelog. Here’s an illustration depicting this process:

Figure 7.17. As the key-value records get written to the store they also get written to the
changelog topic for data durability

So as Kafka Streams places record into a state store, it also sends it to a
Kafka topic that backs the state store. Now if you remember from earlier in
the chapter, I mentioned that with an aggregation you don’t see every update
as Kafka Streams uses a cache to initially hold the results. It’s only on when
Kafka Streams flushes the cache, either at a commit or when it’s full, that
records from the aggregation go to downstream processors. It’s at this point
that Kafka Streams will produce records to the changelog topic.

  Note

If you’ve disabled the cache then every record gets sent to the state store so



this also means every record goes to the changelog topic as well.

7.4.1 Changelog topics restoring state stores

So how does the Kafka Stream leverage the changelog topic? Let’s first
consider the case of a in-memory state store. Since an in-memory store
doesn’t maintain it’s contents across restarts, when starting up, any in-
memory stores will rebuild their contents from head record of the changelog
topic. So even though the in-memory store loses all its contents on
application shut-down, it picks up where it left off when restarted.

For persistent stores, usually it’s only after all local state is lost, or if data
corruption is detected that it will need to do a full restore. For persistent
stores, Kafka Streams maintains a checkpoint file for persistent stores and it
will use the offset in the file as a starting point to restore from instead of
restoring from scratch. If the offset is no longer valid, then Kafka Streams
will remove the checkpoint file and restore from the beginning of the topic.

This difference in restoration patterns brings an interesting twist to the
discussion of the trade-offs of using either persistent or in-memory stores.
While an in-memory store should yield faster look-ups as it doesn’t need to
go to disk for retrieval, under "happy path" conditions the topology with
persistent stores will generally resume to processing faster as it will not have
as many records to restore.

  Important

An exception to using a checkpoint file for restoration is when you run Kafka
Streams in EOS mode (either exactly_once or exactly_once_v2 is enabled)
as state stores are fully restored on startup to ensure the only records in the
stores are ones that were included in successful transactions.

Another situation to consider is the make up of running Kafka Streams
applications. If you recall from our discussion on task assignments, you can
change the number of running applications dynamically, either by expansion
or contraction. Kafka Streams will automatically assign tasks from existing
applications to new members, or add tasks to those still running from an



application that has dropped out of the group. A task that is responsible for a
stateful operation will have a state store as part of its assignment (I’ll talk
about state stores and tasks next).

Let’s consider the case of a Kafka Streams application that loses one of its
members, remember you can run Kafka Streams applications on different
machines and those with the same application id are considered all part of
one logical application. Kafka Streams will issue a rebalance and the tasks
from the defunct application get reassigned. For any reassigned stateful
operations, since Kafka Streams creates a new *empty* store for the newly
assigned task, they’ll need to restore from the beginning of the changelog
topic before they resume processing.

Here’s an illustration demonstrating this situation:

Figure 7.18. When a stateful task gets moved to a new machine Kafka Streams rebuilds the state
store from the beginning of the changelog topic



So by using changelog topics you can be assured your applications will have
a high degree of data durability even in the face of application loss, but
there’s delayed processing until the store is fully online. Fortunately, Kafka
Streams offers a remedy for this situation, the standby task.

7.4.2 Standby Tasks

To enable fast failover from an application instance dropping out of the group
Kafka Streams provides the standby task. A standby task "shadows" an active
task by consuming from the changelog topic into a state store local to the
standby. Then should the active task drop out of the group, the standby
becomes the new active task. But since it’s been consuming from the
changelog topic, the new active task will come online with minimum latency.

  Important

To enable standby tasks you need to set the num.standby.replicas
configuration to a value greater than 0 and you need to deploy N+1 number
of Kafka Streams instances (with N being equal to the number of desired
replicas). Ideally you’ll deploy those Kafka Streams instances on separate
machines as well.

While the concept is straight forward, let’s review the standby process by
walking through the following illustration:

Figure 7.19. A standby task shadows the active task and consumes from the changelog topic
keeping a local state store in-sync with store of the active task



So following along with the illustration a standby task consumes records
from the changelog topic and puts them in its own local state store. To be
clear, a standby task does not process any records, its only job is to keep the
state store in sync with the state store of the active task. Just like any standard
producer and consumer application, there’s no coordination between the
active and standby tasks.

With this process since the standby stays fully caught up to the active task or
at minimum it will be only a handful of records behind, so when Kafka
Streams reassigns the task, the standby becomes the active task and
processing resumes with minimal latency as its already caught up. As with
anything there is a trade-off to consider with standby tasks. By using
standby’s you end up duplicating data, but with benefit of near immediate
fail-over, depending on your use case it’s definitely worth consideration.

  Note

Significant work went into improving the scaling out performance of Kafka
Streams with Kafka KIP-441



(cwiki.apache.org/confluence/display/KAFKA/KIP-
441%3A+Smooth+Scaling+Out+for+Kafka+Streams). When you enable
standby tasks and the standby instance becomes the active one, if at a later
time Kafka Streams determines a more favorable assignment is possible, then
that stateful task may get migrated to another instance.

So far we’ve covered how state stores enable stateful operations and how the
stores are robust due to changelog topic and using standby tasks to enable
quick failover. But we still have some more ground to cover. First we’ll go
over state store assignment, from there you’ll learn how to configure state
stores including how to specify a store type including an in-memory store and
finally how to configure changelog topics if needed.

7.4.3 Assigning state stores in Kafka Streams

In the previous chapter we discussed the role of tasks in Kafka Streams. Here
I want to reiterate that tasks operate in a shared nothing architecture and only
operate in a single thread. While a Kafka Streams application can have
multiple threads and each thread can have multiple tasks, there is nothing
shared between them. I emphasize this "shared nothing" architecture again,
because this means that when a task is stateful, only the owning task will
access its state store, there are no locking or concurrency issues.

Going back to the [Stock-Aggregation] example, let’s say the source topic
has two partitions, meaning it has two tasks. Let’s look at an updated
illustration of tasks assignment with state stores for that example:

Figure 7.20. Stateful tasks have a state store assigned to it



By looking at this illustration you can see that the task associated with the
state store is the only task that will ever access it. Now let’s talk about how
Kafka Streams places state stores in the file system.

7.4.4 State store location on the file system

When you have a stateful application, when Kafka Streams first starts up, it
creates a root directory for all state stores from the
StreamsConfig.STATE_DIR_CONFIG configuration. If not set, the
STATE_DIR_CONFIG defaults to the temporary directory for the JVM followed
by the system dependent separator and then "kafka-streams".



  Important

The value of the STATE_DIR_CONFIG configuration must be unique for each
Kafka Streams instance that shares the same file system

For example on my MacOS the default root directory for state stores is
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams.

  Tip

To view the system dependent temporary directory on you machine you can
start a Java shell from a terminal window by running the jshell command.
Then type in System.getProperty("java.io.tmpdir"), hit the return key
and it will display on the screen.

Next Kafka Streams appends the application-id, which you have to provide in
the configurations, to the path. Again on my laptop the path is
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-

streams/test-application/

From here the directory structure branches out to unique directories for each
task. Kafka Streams creates a directory for each stateful task using the
subtopology-id and partition (separated by an underscore) for the directory
name. For example a stateful task from the first subtopology and assigned to
partition zero would use 0_0 for the directory name.

The next directory is named for the implementation of the store which is
rocksdb. So at this point the path would look like
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-

streams/test-application/0_0/rocksdb. It is under this directory there is
the final directory from the processor (unless provided by a Materialized
object and I’ll cover that soon). To understand how the final directory gets its
name, let’s look at snippet of a stateful Kafka Streams application and the
generated topology names.

Listing 7.17. Simple Kafka Streams stateful application



builder.stream("input")

       .groupByKey()

       .count()

       .toStream()

       .to("output")

This application has topology named accordingly: .Topology names

Topologies:

   Sub-topology: 0

    Source: KSTREAM-SOURCE-0000000000 (topics: [input])

      --> KSTREAM-AGGREGATE-0000000002

    Processor: KSTREAM-AGGREGATE-0000000002 #1

     (stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000001]) #2

      --> KTABLE-TOSTREAM-0000000003

      <-- KSTREAM-SOURCE-0000000000

    Processor: KTABLE-TOSTREAM-0000000003 (stores: [])

      --> KSTREAM-SINK-0000000004

      <-- KSTREAM-AGGREGATE-0000000002

    Sink: KSTREAM-SINK-0000000004 (topic: output)

      <-- KTABLE-TOSTREAM-0000000003

From the topology here Kafka Streams generates the name KSTREAM-
AGGREGATE-0000000002 for the count() method and notice it’s associated
with the store named KSTREAM-AGGREGATE-STATE-STORE-0000000001. So
Kafka Streams takes the base name of the stateful processor and appends a
STATE-STORE and the number generated from the global counter. Now lets
take a look at the full path you would find this state store:
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-

streams/test-application/0_0/rocksdb/KSTREAM-AGGREGATE-STATE-

STORE-0000000001

So it’s the final directory KSTREAM-AGGREGATE-STATE-STORE-0000000001 in
the path that contains the RocksDB files for that store. Now if you were to
check the topics on the broker after starting the Kafka Streams application
you’d see this name in the list test-application-KSTREAM-AGGREGATE-
STATE-STORE-0000000001-changelog. This topic is the changelog for the
state store and notice how Kafka Streams uses a naming convention of
<application-id>-<state store name>-changelog for the topic.

7.4.5 Naming Stateful operations



This naming raises an interesting question, what happens if we add an
operation before the count()? Let’s say you want to add a filter to exclude
certain records from the counting. You’d simply update the topology like so:

Listing 7.18. Updated Topology with a filter

builder.stream("input")

       .filter((key, value) -> !key.equals("bad"))

       .groupByKey()

       .count()

       .toStream()

       .to("output")

Remember, Kafka Streams uses a global counter for naming the processor
nodes, so since you’ve added an operation, every processor downstream of it
will have a new name since the number will be greater by 1. Here’s what the
new topology will look like:

Listing 7.19. Updated Topology names

Topologies:

   Sub-topology: 0

    Source: KSTREAM-SOURCE-0000000000 (topics: [input])

      --> KSTREAM-FILTER-0000000001

    Processor: KSTREAM-FILTER-0000000001 (stores: [])

      --> KSTREAM-AGGREGATE-0000000003

      <-- KSTREAM-SOURCE-0000000000

    Processor: KSTREAM-AGGREGATE-0000000003 #1

     (stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000002]) #2

      --> KTABLE-TOSTREAM-0000000004

      <-- KSTREAM-FILTER-0000000001

    Processor: KTABLE-TOSTREAM-0000000004 (stores: [])

      --> KSTREAM-SINK-0000000005

      <-- KSTREAM-AGGREGATE-0000000003

    Sink: KSTREAM-SINK-0000000005 (topic: output)

      <-- KTABLE-TOSTREAM-0000000004

Notice how the state store name has changed which means there is a new
directory named KSTREAM-AGGREGATE-STATE-STORE-0000000002 and the
corresponding changelog topic is now named test-application-KSTREAM-
AGGREGATE-STATE-STORE-0000000002-changelog.



  Note

Any changes before a stateful operation could result in the generated name
shift, i.e. removing operators will have the same shifting effect.

What does this mean to you? When you redeploy this Kafka Streams
application the directory will only contain some basic RocksDB file, but not
your original contents they are in the previous state store directory. Normally
an empty state store directory does not present an issue, as Kafka Streams
will restore it from the changelog topic. Except in this case the changelog
topic is also new, so it’s empty as well. So while your data is still safe in
Kafka, the Kafka Streams application will start over with empty state store
due to the name changes.

While it’s possible to reset the offsets and process data again, a better
approach is to avoid name shifting situation all together by providing a name
for the state store instead of relying on the generated one. In the previous
chapter I covered naming processor nodes for providing a better
understanding of what the topology does. But in this case it goes beyond
better understanding of its role in the topology, which is important, but also
makes your application robust in the face of a changing topology.

Going back to the simple count() example in this section, you’ll update the
application by passing Materialized object to count() operation:

Listing 7.20. Naming the state store using a Materialized object

builder.stream("input")

       .groupByKey()

       .count(Materialized.as("counting-store")) #1

       .toStream()

       .to("output")

By providing the name of the state store, Kafka Streams will name the
directory on disk counting-store and the changelog topic becomes test-
application-counting-store-changelog, and both of these names are
"frozen" and will not change regardless of any updates you make to the
topology. It’s important to note that the names of state stores within a



topology must be unique, otherwise you’ll get a TopologyException.

  Note

Only stateful operations are affected by name shifting. But since stateless
operations don’t keep any state, changes in processor names from topology
updates will have no impact.

The bottom line is to always name state stores and repartition topics using the
appropriate configuration object. By naming the stateful parts of your
applications, you can ensure that topology updates don’t break the
compatibility. Here’s a table summarizing which configuration object to use
and the operation(s) it applies to:

Table 7.1. Kafka Streams configuration objects for naming state stores and repartition topics

Configuration Object What’s Named Where Used

Materialized State Store, Changelog
topic Aggregations

Repartitioned Repartition topic Repartition (manual by
user)

Grouped Repartition topic GroupBy (automatic
repartitioning)

StreamJoined State Store, Changelog
topic, Repartition topic

Joins (automatic
repartitioning)



Naming state stores provides the added benefit of being able to query them
while your Kafka Streams application is running, providing live, materialized
views of the streams. I’ll cover interactive queries in the next chapter.

So far you’ve learned how Kafka Streams uses state stores in support of
stateful operations. You also learned that the default is for Kafka Streams to
use persistent stores and there are in-memory store implementations
available. In the next section I’m going to cover how you can specify a
different store type as well as configuration options for the changelog topics.

7.4.6 Specifying a store type

All the examples so far in this chapter use persistent state stores, but I’ve
stated that you can use in-memory stores as well. So the question is how do
you go about using an in-memory store? So far you’ve used the
Materialized configuration object to specify Serdes and the name for a
store, but you can use it to provide a custom StateStore instance to use.
Kafka Streams makes it easy to provide an in-memory version of the
available store types (so far I’ve only covered "vanilla" key-value stores, but
I’ll get to sessioned, windowed, timestamped stores in the next chapter).

The best way to learn how to use a different store type is to change one of our
existing examples. Let’s revisit the first stateful example used to keep track
of scores in an online poker game:

Listing 7.21. Performing a reduce in Kafka Streams to show running total of scores in an online
poker game updated to use in-memory stores

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",

        Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream

        .groupByKey()

        .reduce(Double::sum,

                Materialized.<String, Double>as(

            Stores.inMemoryKeyValueStore("memory-poker-score-store")) 

                  .withKeySerde(Serdes.String())  #2

                  .withValueSerde(Serdes.Double())) #3

        .toStream()

        .to("total-scores",



                Produced.with(Serdes.String(), Serdes.Double()));

So by using the overloaded Materialized.as method, you provide a
StoreSupplier using one of the factory methods available from the Stores
class. Notice that you still pass the serde instances needed for the store. And
that’s all it takes to switch the store type from persistent to in-memory.

  Note

Switching in a different store type is fairly straight forward so I’ll only have
the one example here. But the source code will contain a few additional
examples.

So why would you want to use an in-memory store? Well, an in-memory
store will give you faster access since it doesn’t need to go to disk to retrieve
values. So a topology using in-memory stores should have higher throughput
than one using persistent ones. But there are trade-offs you should consider.

First, an in-memory store has limited storage space, and once it reaches it’s
memory limit it will evict entries to make space. The second consideration is
when you stop and restart a Kafka Streams application, under "happy-path"
conditions, the one with persistent stores will start processing faster due to
the fact that it will have all its state already, but the in-memory stores will
always need to restore from the changelog topic.

Kafka Streams provides a factory class Stores that provides methods for
creating either StoreSuppliers or StoreBuilders. The choice of which one
to use depends on the Kafka Streams API. When using the DSL you’ll use
StoreSuppliers with a Materialized object. In the Processor API, you’ll
use a StoreBuilder and directly add it to the topology. I’ll cover the
Processor API in chapter 9.

  Tip

To see all the different store types you can create view the JavaDoc for the
Stores class javadoc.io/doc/org.apache.kafka/kafka-



streams/latest/org/apache/kafka/streams/state/Stores.html

Now that you’ve learned how to specify a different store type, let’s move on
to one more topic to cover with state stores, how you can configure the
changelog topic.

7.4.7 Configuring changelog topics

There’s nothing special about changelog topics, so you can use any
configuration parameters available for topics. But for the most part the
default settings should suffice, so you should only consider changing the
configurations when it’s absolutely necessary.

  Note

State store changelogs are compacted topics, which we discussed in chapter
2. As you may recall, the delete semantics require a null value for a key, so if
you want to remove a record from a state store permanently, you’ll need to do
a put(key, null) operation.

Let’s revisit the example from above where you provided a custom name for
the state store. Let’s say the data processed by this application also has a
large key space. The changelogs in Kafka Streams are compacted topics.
Compacted topics use a different approach to cleaning up older records.

Instead of deleting log segments by size or time, log segments are compacted
by keeping only the latest record for each key—older records with the same
key are deleted. But since the key space is large compaction may not be
enough, as the size of the log segment will keep growing. In that case, the
solution is simple. You can specify a cleanup policy of delete and compact .

Listing 7.22. Setting a cleanup policy and using Materialized to set the new configuration

Map<String, String> changeLogConfigs = new HashMap<>();

changeLogConfigs.put("cleanup.policy", "compact,delete");

builder.stream("input")

       .groupByKey()



       .count(Materialized.as("counting-store")

              .withLoggingEnabled(changeLogConfigs)) #1

       .toStream()

       .to("output")

So here you can adjust the configurations for this specific changelog topic.
Earlier I mentioned that to disable the caching that Kafka Streams uses for
stateful operations, you’d set the
StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG setting to zero. But
since it’s in the configuration, it is globally applied to all stateful operations.
If you only wanted to disable the cache for a specific one you could disable it
by calling Materialized.withCachingDisabled() method when passing in
the Materialzied object.

  Warning

The Materialized object also provides a method to disable logging. Doing
so will cause the state store to not have a changelog topic, hence it is subject
to getting in a state where it can’t restore its previous contents. It is
recommended to only use this method if absolutely necessary. In my time
working with Kafka Streams, I can’t say I’ve encountered a good reason for
using this method.

7.5 Summary

Stream processing needs state. Stateless processing is acceptable in a lot
of cases, but to make more complex decisions you’ll need to use stateful
operations.
Kafka Streams provides stateful operations reduce, aggregation, and
joins. The state store is created automatically for you and by default they
use persistent stores.
You can choose to use in-memory stores for any stateful operation by
passing a StoreSupplier from the Stores factory class to the
Materialized configuration object.
To perform stateful operations your records need to have valid keys-if
your records don’t have a key or you’d like to group or join records by a
different key you can change it and Kafka Streams will automatically



repartition the data for you.
It’s important to always provide a name for state stores and repartition
topics-this keeps your application resilient from breaking when you
make topology changes.



8 Windowing and Time Stamps
This chapter covers

Changelog streams, the KTable and the GlobalKTable
Aggregating records with a KTable
Joining a KTable with KStream or another KTable
Windowing to capture aggregations in specific period of time
Using suppression for final windowed results
Understanding the importance of timestamps in Kafka Streams

In this chapter, we’re going to continue working with state in a Kafka
Streams application. You’ll learn about the KTable which is considered an
update or changelog stream. As a matter of fact you’ve already used a KTable
as any aggregation operations in Kafka Streams result in a KTable. The
KTable is an important abstraction for working with records that have the
same key. Unlike the KStream where records with the same key are still
considered independent event, in the KTable a record is an update to the
previous record that has the same key.

To make a comparison to a relational database, the event stream (a KStream)
could be considered a series of inserts where the primary key is an auto-
incriminating number. As a result each insert of a new record has no
relationship to previous ones. But with a KTable the key in the key-value pair
is the primary key, so each time a record arrives with the same key, it’s
consider an update to the previous one.

From there you’ll learn about aggregation operations with a KTable.
Aggregations work a little differently because you don’t want to group by
primary key, you’ll only ever have on record that way, instead you’ll need to
consider how you want to group the records to calculate the aggregate.

Since you can use the KTable as lookup table, a join between a stream and
table is a power combination, where you can enrich the event stream records
by performing a lookup in the table for additional details. You can also join



two tables together, even using a foreign key. You’ll also learn about a
unique construct called the GlobalKTable which, unlike the KTable which
sharded by partitions, contains all records from it’s underlying source across
all application instances.

After covering the table abstractions we’ll get into how to "bucket" your
aggregations into specific time periods using windowing. For example, how
many purchases have there been over the past hour, updated every ten
minutes? Windowing allows you to place data in discrete blocks of time, as
opposed to having an unbounded collection. You’ll also learn how to produce
a single final result from a windowed operation when the window closes.
There’s also the ability to expose the underlying state stores to queries from
outside the application allowing for real-time updates on the information in
the event stream.

Our final topic for the chapter is how timestamps drive the behavior in Kafka
Streams and especially their impact on windowing and stateful operations.

8.1 KTable The Update Stream

To fully understand the concept of an update stream, it will be useful to
compare with an event stream to see the differences between the two. Let’s
use a concrete example of tracking stock price updates.

Figure 8.1. A diagram for an unbounded stream of stock quotes



You can see that each stock price quote is a discrete event, and they aren’t
related to each other. Even if the same company accounts for many price
quotes, you’re only looking at them one at a time. This view of events is how
the KStream works—it’s a stream of records.

Now, let’s see how this concept ties into database tables. Each record is an
insert into the table, but the primary key is a number increment for each
insert, depicted simple stock quote table in figure 8.2.

Figure 8.2. A simple database table represents stock prices for companies. There’s a key column,
and the other columns contain values. You can consider this a key/value pair if you lump the
other columns into a “value” container.



Next, let’s take another look at the record stream. Because each record stands
on its own, the stream represents inserts into a table. Figure 5.3 combines the
two concepts to illustrate this point.

Figure 8.3. A stream of individual events compares to inserts into a database table. You could
similarly imagine streaming each row from the table.





What’s important here is that you can view a stream of events in the same
light as inserts into a table, which can help give you a deeper understanding
of using streams for working with events. The next step is to consider the
case where events in the stream are related to one another.

8.1.1 Updates to records or the changelog

Let’s say you want to track customer purchase behavior, so you take the same
stream of customer transactions, but now track activity over time. If you add
a key of customer ID, the purchase events can be related to each other, and
you’ll have an update stream as opposed to an event stream.

If you consider the stream of events as a log, you can consider this stream of
updates as a changelog. Figure 8.4 demonstrates this concept.

Figure 8.4. In a changelog, each incoming record overwrites the previous one with the same key.
With a record stream, you’d have a total of four events, but in the case of updates or a changelog,
you have only two.





Here, you can see the relationship between a stream of updates and a database
table. Both a log and a changelog represent incoming records appended to the
end of a file. In a log, you see all the records; but in a changelog, you only
keep the latest record for any given key.

  Note

With both a log and a changelog, records are appended to the end of the file
as they come in. The distinction between the two is that in a log, you want to
see all records, but in a changelog, you only want the latest record for each
key.

To trim a log while maintaining the latest records per key, you can use log
compaction, which we discussed in chapter 2. You can see the impact of
compacting a log in figure 8.5. Because you only care about the latest values,
you can remove older key/value pairs.[6]

Figure 8.5. On the left is a log before compaction—you’ll notice duplicate keys with different
values, which are updates. On the right is the log after compaction—you keep the latest value for
each key, but the log is smaller in size.



You’re already familiar with event streams from working with KStreams. For
a changelog or stream of updates, we’ll use an abstraction known as the
KTable. Now that we’ve established the relationship between streams and
tables, the next step is to compare an event stream to an update stream.

8.1.2 Event streams vs. update streams



We’ll use the KStream and the KTable to drive our comparison of event
streams versus update streams. We’ll do this by running a simple stock ticker
application that writes the current share price for three (fictitious!)
companies. It will produce three iterations of stock quotes for a total of nine
records. A KStream and a KTable will read the records and write them to the
console via the print() method.

  Note

The KTable does not have methods like print() or peek() in its API, so to
do any printing of records you’ll need to convert the KTable from an update
stream to an event stream by using the toStream() method first.

Figure 8.6 shows the results of running the application. As you can see, the
KStream printed all nine records. We’d expect the KStream to behave this
way because it views each record individually. In contrast, the KTable printed
only three records, because the KTable views records as updates to previous
ones.

Figure 8.6. KTable versus KStream printing messages with the same keys





From the KTable’s point of view, it didn’t receive nine individual records.
The KTable received three original records and two rounds of updates, and it
only printed the last round of updates. Notice that the KTable records are the
same as the last three records published by the KStream. We’ll discuss the
mechanisms of how the KTable emits only the updates in the next section.

Here’s the program for printing stock ticker results to the console (found in
src/main/java/bbejeck/chapter_8/KStreamVsKTableExample.java; source
code can be found on the book’s website here: manning.com/books/kafka-
streams-in-action-second-edition).

Listing 8.1. KTable and KStream printing to the console

KTable<String, StockTickerData> stockTickerTable =

builder.table(STOCK_TICKER_TABLE_TOPIC);#1

KStream<String, StockTickerData> stockTickerStream =

builder.stream(STOCK_TICKER_STREAM_TOPIC);#2

stockTickerTable.toStream()

  .print(Printed.<String, StockTickerData>toSysOut()

  .withLabel("Stocks-KTable")); #3

stockTickerStream

  .print(Printed.<String, StockTickerData>toSysOut()

  .withLabel("Stocks-KStream"));#4

Using default serdes

In creating the KTable and KStream, you didn’t specify any serdes to use. The
same is true with both calls to the print() method. You were able to do this
because you registered a default serdes in the configuration. like so:

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,

   Serdes.String().getClass().getName());

props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,

   StreamsSerdes.StockTickerSerde().getClass().getName());

If you used different types, you’d need to provide serdes in the overloaded
methods for reading or writing records.



The takeaway here is that records in a stream with the same keys are updates,
not new records in themselves. A stream of updates is the main concept
behind the KTable, which is the backbone of stateful operations in Kafka
Streams.

8.2 KTables are stateful

In the previous example when you created the table with the
StreamsBuilder.table statement Kafka Streams also creates a StateStore
for tracking the state and by default it’s a persistent store. Since state stores
only work with byte arrays for the keys and values you’ll need to provide the
Serde instances so the store can (de)serialize the keys and values. Just as you
can provide specific serdes to an event stream with Consumed configuration
object, you can do the same when creating a KTable:

builder.table(STOCK_TICKER_TABLE_TOPIC,

              Consumed.with(Serdes.String(),

                           StockTradeSerde()));

Now the serdes you’ve provided with the Consumed object get passed along to
the state store. There’s an additional overloaded version of
StreamsBuilder.table that accepts a Materialized instance as well. This
allows you to customize the type of store and provide a name to make it
available for querying. We’ll discuss interactive queries later in this chapter.

It’s also possible to create a KTable directly by using the KStream.toTable
method. Using this method changes the interpretation of the records from
events to updates. You can also use the KTable.toStream method to convert
the update stream into an event stream. We’ll talk more about this conversion
from update stream to event stream when we discuss the KTable API.

The main point here is you are creating a KTable directly from a topic, which
results in creating a state store.

So far I’ve talked about how the KTable handles inserts and updates, but what
about when you need to delete a record? To remove a record from a KTable
you send send a key-value pair with the value set to null and this will act as
a tombstone marker ultimately getting removed from the state store and the



changelog topic backing the store, in other words it’s deleted from the table.

Just like the KStream, the KTable is spread out over tasks determined by the
number of partitions in the underlying source topic, meaning that the records
for the table are potentially distributed over separate application instances.
We’ll see a little later in this chapter an abstraction where all the records are
available in a single table.

8.3 The KTable API

The KTable API offers similar methods to what you’d see with the KStream -
filter, filterNot, mapValues, and transformValues (I won’t talk about
transformValues here, but we’ll cover it in Processor API chapter later in
the book). Executing these methods also follow the fluent pattern, they return
a new KTable instance.

While the functionality of these methods are very similar as the same
methods in the KStream API, there are some differences in how they operate.
The differences come into play due to the fact that key-value pairs where the
value is null has delete semantics.

So the delete semantics have the following effects on how the KTable
operates:

1. If the incoming value is null the processor is not evaluated at all and the
key-value with the null is forwarded to the new table as a tombstone
marker.

2. In the case of the filter and filterNot methods records that get
dropped a tombstone record is forwarded to the new table as a
tombstone marker as well.

As an example to follow along with see the KTableFilterExample in the
bbejeck.chapter_8 package. It runs a simple KTable.filter example where
some of the incoming values are null as well as filtering out some of the
non-null values. But since we’ve discussed filtering previously, I won’t
review the example here and I’ll leave up to you as an exercise to do on your
own.



Since I’ve already covered stateless operations in a previous chapter and
we’ve discussed the different semantics of the KTable, we’ll move on at this
point to discuss aggregations and joins.

8.4 KTable Aggregations

Aggregations in the KTable operate a little differently than the ones we’ve
seen in the KStream, so let’s dive in with an example to illustrate. Imagine
you build an application to track stocks. You’re only interested in the latest
price for any given symbol, so using a KTable makes sense as that is its
default behavior. Additionally, you’d like tp keep track of how different
market segments are performing. For example, you’d group the stocks of
Google, Apple, and Confluent into the tech market segment. So you’ll need
to perform an aggregation and group different stocks together by the market
segment they belong to. Here’s what your KTable aggregation would look
like:

Listing 8.2. Aggregates with A KTable

KTable<String, StockAlertProto.StockAlert> stockTable =

                builder.table("stock-alert",

                 Consumed.with(stringSerde, stockAlertSerde)); #1

stockTable.groupBy((key, value) ->

                    KeyValue.pair(value.getMarketSegment(), value),

                Grouped.with(stringSerde, stockAlertSerde)) #2

        .aggregate(segmentInitializer, #3

                adderAggregator,                 #4

                subtractorAggregator,            #5

                Materialized.with(stringSerde, segmentSerde))

        .toStream()

        .to("stock-alert-aggregate",

                Produced.with(stringSerde, segmentSerde));

Annotation one is where you create the KTable and is what you’d expect to
see but annotation two you’re performing a groupBy and updating the key to
be the market segment which will force a repartition of the data. Now this
makes sense, since the original key is the stock symbol you’re not guaranteed
that all stocks from a given market segment reside on the same partition.



But this requirement somewhat hides the fact with a KTable aggregation
you’ll always need to perform a group-by operation. Why is this so?
Remember that with a KTable, the incoming key is considered a primary key,
and just like in a relational database, grouping by the primary-key always
results in a single record - hence not much is provided for an aggregation. So
you’ll need to group records by another field because the combination of the
primary-key and the grouped field(s) will yield results suitable for an
aggregation. And similar to the KStream API, calling the KTable.groupBy
method returns an intermediate table - KGroupedTable which you’ll use to
execute the aggregate method.

The second difference occurs with annotations four and five. With the KTable
aggregations, just like with the KStream the first parameter you provide is an
Initializer instance, to provide the default value for the first aggregation.
However you then supply two aggregators one that adds the new value into
the aggregation and the other one subtracts values from the aggregation for
the previous entry with the same key. Let’s look at an illustration to help
make this process clear:

Figure 8.7. KTable Aggregations use an Adder aggregator and a Subtractor aggregator



Here’s another way to think about it - if you were to perform the same thing
on a relational table, summing the values in the rows created by a grouping,
you’d only every get the latest, single value per row created by the grouping.
For example the SQL equivalent of this KTable aggregation could look
something like this:

Listing 8.3. SQL of KTable aggregation

SELECT market_segment,

       sum(share_volume) as total_shares,

       sum(share_price * share_volume) as dollar_volume

       FROM stock_alerts



       GROUP BY market_segment;

From the SQL perspective, when a new record arrives, the first step is to
update the alerts table, then run the aggregation query to get the updated
information. This is exactly the process taken by the KTable, the new
incoming record updates the table for the stock_alerts and it’s forwarded to
the aggregation. Since you can only have one entry per stock symbol in the
roll-up, you add the new record into the aggregation, then remove the
previous value for the given symbol. Consider this example, a record comes
in for the ticker symbol CFLT so the KTable is updated with new entry. Then
the aggregate updates with new entry for CFLT, but since there’s already a
value for it in the aggregation you must remove it then recalculate the
aggregation with the new value.

Now that we’ve covered how the KTable aggregation works, let’s take a look
at the Aggregator instances. But since we’ve covered them in a previous
chapter, let’s just take a look at the logic of the adder and subtractor. Even
though this is just one example the basic principals will be true for just about
any KTable aggregation.

Let’s start with the adder:

Listing 8.4. KTable adder Aggregator

//Some details omitted for clarity

final Aggregator<String,

                 StockAlertProto.StockAlert,

                 SegmentAggregateProto.SegmentAggregate> adderAggregator =

                       (key, newStockAlert, currentAgg) -> {

            long currentShareVolume =

                    newStockAlert.getShareVolume(); #1

            double currentDollarVolume =

                    newStockAlert.getShareVolume() * newStockAlert.getSharePrice(); 

            aggBuilder.setShareVolume(currentAgg.getShareVolume() + currentShareVolume); 

            aggBuilder.setDollarVolume(currentAgg.getDollarVolume() + currentDollarVolume); 

}

Here the logic is very simple: take the share volume from the latest



StockAlert and add it to the current aggregate, then do the same with the
dollar volume (after calculating it by multiplying the share volume by the
share price).

  Note

Protobuf objects are immutable so when updating values we need to create
new instances using a builder that is generated for each unique object.

Now for the subtractor, you guessed it, you’ll simply do the reverse and
*subtract* the same values/calculations for the previous record with the same
stock ticker symbol in the given market segment. Since the signature is the
same I’ll only show the calculations:

Listing 8.5. KTable subtractor Aggregator

//Some details omitted

long prevShareVolume = prevStockAlert.getShareVolume();

double prevDollarVolume =

      prevStockAlert.getShareVolume() * prevStockAlert.getSharePrice();

aggBuilder.setShareVolume(currentAgg.getShareVolume() - prevShareVolume); #1

aggBuilder.setDollarVolume(currentAgg.getDollarVolume() - prevDollarVolume);#2

The logic is straight forward, you’re subtracting the values from the
StockAlert that has been replaced in the aggregate. I’ve added some logging
to the example to demonstrate what is going on and it will be a good idea to
look over a portion of that now to nail down what’s going on:

Listing 8.6. Logging statements demonstrating the adding and subtracting process of the KTable
aggregate

Adder     : -> key textiles stock alert symbol: "PXLW" share_price: 2.52 share_volume: 4 market_segment: "textiles"  and aggregate  

Adder     : <- updated aggregate dollar_volume: 10.08 share_volume: 4  

Subtractor: -> key textiles stock alert symbol: "PXLW" share_price: 2.52 share_volume: 4 market_segment: "textiles"

               and aggregate dollar_volume: 54.57 share_volume: 18    

Subtractor: <- updated aggregate dollar_volume: 44.49 share_volume: 14  



Adder     : -> key textiles stock alert symbol: "PXLW" share_price: 3.39 share_volume: 6 market_segment: "textiles"

               and aggregate dollar_volume: 44.49 share_volume: 14  

Adder     : <- updated aggregate dollar_volume: 64.83 share_volume: 20 

By looking at this output excerpt you should be able to clearly see how the
KTable aggregate works, it keeps only the latest value for each unique
combination of the original KTable key and the key used to execute the
grouping, which is exactly what you’d expect, since you’re performing an
aggregation over a table with only one entry per primary key.

It’s worth noting here that KTable API also provides reduce and count
methods which you’ll take similar steps. You first perform a groupBy, and for
the reduce provide an adder and subtractor Reducer implementation. I won’t
cover them here, but there will be examples of both reduce and count in the
source code for the book.

This wraps up our coverage of the KTable API but before we move on to
more advanced stateful subjects, I’d like to go over another table abstraction
offered by Kafka Streams, the GlobalKTable.

8.5 GlobalKTable

I alluded to the GlobalKTable earlier in the chapter when we discussed that
the KTable is partitioned, hence its distributed out among Kafka Streams
application instances (with the same application id of course). What makes
the GlobalKTable unique is the fact that it’s not partitioned, it fully consumes
the underlying source topic. This means there is a full copy of all records in
the table for all application instances.

Let’s look at an illustration to help make this clear:

Figure 8.8. GlobalKTable contains all records in a topic on each application instance



As you can see the source topic for the KTable has three partitions and with
three application instances, each KTable is responsible for one partition of
data. But the GlobalKTable has the *full copy* of its three-partition source
topic on each instance. Kafka Streams materializes the GlobalKTable on
local disk in a KeyValueStore, but there is no changelog topic crated for this
store as the source topic serves as the backup for recovery as well.

Here’s how you’d create one in your application:

Listing 8.7. Creating a GlobalKTable

StreamsBuilder builder = new StreamsBuilder();

GlobalKTable<String, String> globalTable =

  builder.globalTable("topic",



                      Consumed.with(Serdes.String(),

                                   Serdes.String()));

The interesting thing to note about the GlobalKTable is that it doesn’t offer
an API. So I’m sure you’re asking yourself "why would I ever want to use
one?". The answer to that question will come in our next section when we
discuss joins with the KTable.

8.6 KTable Joins

In the previous chapter you learned about performing joins with two KStream
objects, but you can also perform KStream-KTable, KStream-GlobalKTable,
and KTable-KTable joins. Why would you want to join a stream and a table?
Stream-table joins represent an excellent opportunity to create an enriched
event with additional information. For the stream-table and table-table joins,
both sides need to be co-partitioned - meaning the underlying source topics
must have the same number of partitions. If that is not the case then you’ll
need to do a repartition operation to achieve the co-partitioning. Since the
GlobalKTable has a full copy of the records there isn’t a co-partitioning
requirement for stream-global table joins.

For example, let’s say you have an event stream of user activity on a website,
a clickstream, but you also maintain a table of current users logged into the
system. The clickstream event object only contains a user-id and the link to
the visited page but you’d like more information. Well you can join the
clickstream against the user table and you have much more useful
information about the usage patterns of your site - in real time. Here’s an
example to work through:

Listing 8.8. Stream-Table join to enrich the event stream

KStream<String, ClickEventProto.ClickEvent> clickEventKStream =

                builder.stream("click-events",

                        Consumed.with(stringSerde, clickEventSerde));

KTable<String, UserProto.User> userTable =

        builder.table("users",

                Consumed.with(stringSerde, userSerde));



clickEventKStream.join(userTable, clickEventJoiner)

        .peek(printKV("stream-table-join"))

        .to("stream-table-join",

                Produced.with(stringSerde, stringSerde));

Looking at the code in this example, you first create the click-event stream
then a table of logged in users. In this case we’ll assume the stream has the
user-id for the key and the user tables' primary key is the user-id as well, so
we can easily perform a join between them as is. From there you call the join
method of the stream passing in the table as a parameter.

8.7 Stream-Table join details

At this point I’d like to cover a few of differences with the stream-table joins
from the stream-stream join. First of all stream table joins aren’t reciprocal -
the stream is always on the left or calling side and the table is always on the
right side. Secondly, there is no window that the timestamps of the records
need to fit into for a join to occur, which dove tails into the third difference;
only updates on the stream produce a join result.

In other words, it’s only newly arriving records on the stream that trigger a
join, new records to the table update the value for the key in table, but don’t
result in a join result. To capture the join result you provide a ValueJoiner
object that accepts the value from both sides and produces a new value which
can be the same type of either side or a new type altogether. With stream-
table joins you can perform an inner (equi) join or a left-outer join
(demonstrated here).

8.8 Table-Table join details

Next, let’s talk about table-table joins. Joins between the two tables are pretty
much the same that you’ve seen so far with join functionality. Joins between
two tables is similar to stream-stream joins, except there is now windowing,
but updates to either side will trigger a join result. You provide a
ValueJoiner instance that calculates the join results and can return an
arbitrary type. Also, the constraint that the source topic for both sides have
the same number partitions applies here as well.



But there’s something extra offered for table-table joins. Let’s say you have
two KTables you’d like to join; users and purchase transactions, but the
primary key for the users is user-id and the primary key for transactions is a
transaction-id, although the transaction object contains the user-id. Usually a
situation like this would require some sort of workaround, but not now, as the
KTable API offers a foreign-key join, so you can easily join the two tables.
To use the foreign-key join you use the signature of the KTable.join method
that looks like this:

Listing 8.9. KTable Foreign Key join

userTable.join(transactionTable,   #1

               foreignKeyExtractor, #2

               joiner);  #3

Setting up the foreign key join is done like any other table-table join except
that you provide an additional parameter a java.util.Function object, that
extracts the key used to complete the join. Specifically, the function extracts
the key from the left-side value to correspond with the key of the right side
table. If the function returns null then no join occurs.

Inner and left-outer joins support joining by a foreign key. As with primary-
key table joins, an update on either side will trigger a potential join result.
The inner workings of the foreign-key join in Kafka Streams is involved and
I won’t go into those details, but if you are interested in more details then I
suggest reading KIP-213 cwiki.apache.org/confluence/display/KAFKA/KIP-
213+Support+non-key+joining+in+KTable.

  Note

There isn’t a corresponding explicit foreign-key joins available in the
KStream API and that is intentional. The KStream API offers methods map
and selectKey where you can easily change the key of a stream to facilitate a
join.

8.9 Stream-GlobaTable join details



The final table join for us to discuss is the stream-global table join. There a
few differences with the stream-global table we should cover. First it’s the
only join in Kafka Streams that does not require co-partitioning. Remember
the GlobalKTable is not sharded like the KTable is, a partition per task, but
instead contains all the data of its source topic. So even if the partitions of the
stream and the global-table don’t match, if the key is present in the global
table, a join result will occur.

The semantics of a global table join are different as well. Kafka Streams
process incoming KTable records along with every other incoming records by
timestamps on the records, so with a stream-table join the records are aligned
by timestamps. But with a GlobalKTable, updates are simply applied when
records are available, it’s done separately from the other components of the
Kafka Streams application.

Having said that, there are some key advantages of using a GlobalKTable. In
addition to having all records on each instance, stream-global tables support
foreign key joins, the key of the stream does not have to match the key of the
global table. Let’s look at a quick example:

Listing 8.10. KStream GlobalTable Join example

userStream.join(detailsGlobalTable, #1

                keySelector, #2

                valueJoiner); #3

So with the KStream-GlobalKTable join the second parameter is a
KeyValueMapper that takes the key and value of the stream and creates the
key used to join against the global table (in this way it is similar to the KTable
foreign-key join). It’s worth noting that the result of the join will have the key
of the stream regardless of the GlobalTable key or what the supplied
function returns.

Of course every decision involves some sort of trade-off. Using a
GlobalKTable means using more local disk space and a greater load on the
broker since the data is not sharded, but the entire topic is consumed. The
stream-global table join is not reciprocal, the KStream is always on the calling
or left-side of the join. Additionally, only updates on the stream produce a



join result, a new record for the GlobalKTable only updates the internal state
of the table. Finally, either inner or left-outer joins are available.

So what’s best to use when joining with a KStream a KTable or
GlobalKTable? That’s a tough question to answer as there are no hard
guidelines to follow. But a good rule of thumb would be to use a
GlobalKTable for cases where you have fairly static lookup data you want to
join with a stream. If the data in your table is large strongly consider using a
KTable since it will end up being sharded across multiple instances.

At this point, we’ve covered the different joins available on both the KTable
and GlobalKTable. There’s more to cover with tables, specifically viewing
the contents of the tables with interactive queries and suppressing output
from a table (KTable only) to achieve a single final result. We’ll cover
interactive queries a little later in the chapter. But we’ll get to suppression in
our next section when we discuss windowing.

8.10 Windowing

So far you’ve learned about aggregations on both the KStream and KTable.
While they both produce an aggregation, how they are calculated is bit
different. Since the KStream is an event stream where all records are
unrelated, the aggregations will continue to grow over time. But with either
case the results produced are cumulative over time. Maybe not as much for
KTable aggregations, but that’s definitely the case for KStream aggregations.

There’s good chance that you’ll want to see results within given time
intervals. For example, what’s the average reading of a IoT temperature
sensor every 15 minutes? To capture aggregations in slices of time, you’ll
want to use windowing. In Kafka Streams windowing an aggregation means
that you’ll get results in distinct blocks of time as defined by the size of the
window. There are four window types available:

1. Hopping - Windows with a fixed size by time and the advance time is
less than the window size resulting in overlapping windows. As a result,
results may be included in more than one window. You’d use a hopping
window when a result from the previous window is useful for



comparison such as fraud detection.
2. Tumbling - A special case of a hopping window where the advance time

is the same as the window size, so each window contains unique results.
A good use case for tumbling windows is inventory tracking because
you only want the unique amount of items sold per window.

3. Session - A different type of window where its size is not based on time
but on behavior instead. Session windows define an inactivity-gap and
as long as new events arrive within the defined gap, the window grows
in size. But once reaching the inactivity gap, new events will go into a
new window. Session windows are great for tracking behavior becuase
the windows are determined by activity.

4. Sliding - Sliding windows are fixed time windows, but like the session
window, they can continue to grow in size because they are based on
behavior as well. Sliding windows specify the maximum difference
between timestamps of incoming records for inclusion in the window.

What we’ll do next is present some examples and illustrations demonstrating
how to add windowing to aggregations and more detail on how they work.

The first example will show how to implement a hopping window on a
simple count application. Although the examples will be simple to make
learning easier to absorb, the simplicity of the aggregation doesn’t matter.
You can apply windowing to any aggregation.

Listing 8.11. Setting up hopping windows for an aggregation

//Some details omitted for clarity

  countStream.groupByKey()

   .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1)) #1

            .advanceBy(Duration.ofSeconds(10)))     #2

   .count(Materialized.as("hopping-window-counting-store"))

   .toStream()          #3

   .map((windowedKey, value) -> KeyValue.pair(windowedKey.key(), value)) #4

   .to("counting-output", Produced.with(stringSerde, longSerde));

In this example you’re using a hopping window with a size of one minute and
an advance of 10 seconds. Let’s review the code here to understand what
your specifying. The windowedBy call at annotation one sets up the
windowing and specifies the size of the window. You no doubt noticed the



method name ofSizeWithNoGrace, so what does the WithNoGrace mean
(other than dribbling your dinner down the front of your shirt!)? Grace is a
concept in Kafka Streams that allows you to define how you want to handle
out-of-order records, but I’d like to defer that conversation until we’ve
finished discussing the hopping window.

At annotation two, you use the advanceBy call which determines the interval
that the aggregation will occur. Since the advanceBy is less than the window
size, it is a hopping window. At annotation three we convert the KTable to a
KStream as we need to convert from the update stream to an event stream so
we can perform some operations on each result.

At annotation four, you use a map processor to create a new KeyValue object,
specifically creating a new key. This new key is actually the original key for
the pair when it entered the aggregation. When you perform a windowed
aggregation on a KStream the key going into the KTable gets "upgraded" to a
Windowed key. The Windowed class contains the original key from the record
in the aggregation and a reference to the specific Window the record belongs
to.

Processing the key-values coming from a windowed aggregation presents you
with a choice; keep the key as is, or use the map processor to set the key the
original one. Most of the time it will make sense for you to revert to the
original key, but there could be times where you want to keep the Windowed
one, there really isn’t any hard rules here. In the source code there’s an
example of using both approaches.

Getting back to how a hopping window operates, here’s an illustration
depicting the action:

Figure 8.9. Hopping windows hop to the right by the given advance time which



From looking at the illustration, the first record into the aggregation opens the
window with the time of its timestamp. Every ten seconds, again based on
record timestamps, the aggregation performs its calculation, a simple count in
this case. So a hopping window has a fixed size where it collects records, but
it doesn’t wait the entire time of the window size to perform the aggregation;
it does so at intervals within the window corresponding to the advance time.
Since the aggregation occurs within the window time it may contain some
records from the previous evaluation.

You now have learned about the hopping window, but so far we’ve assumed
that records allways arrive in order. Suppose some of your records don’t
arrive in order and you’d still like to include them (up to a point) in your
count, what whould you do to handle that? Now’s a good time to circle back
to the concept of out-of-order and grace I mentioned previously.

8.11 Out order records and grace

It will be easier to grasp the concept of grace if we first describe what an out-
of-order record is. You’ve learned in a previous chapter the KafkaProducer
will set the timestamp on a record. In this case timestamps on the records in



Kafka Streams should always increase. But in some cases you may want to
use a timestamp embedded in the value, and in that scenario you can’t be
guaranteed that those timestamps always increase. The following illustration
demonstrates this concept:

Figure 8.10. Out of order records didn’t arrive in the correct sequence

So an out-of-order record is simply one where the timestamp is less than the
previous one.

Now moving on to grace, it is the amount of time after a window is
considered closed that you’re willing to allow an out-of-order record into the
aggregation. Here’s an illustration demonstrating the concept:

Figure 8.11. Grace is the amount of time you’ll allow out-of-order records into a window after its
configured close time



So from looking at the illustration, grace allows records into an aggregation
that would have been included were they on-time, and allows for a more
accurate calculation. Once the grace period has expired, any out-of-order
records are considered late and dropped. In the case of our example above,
since we’re not providing a grace period, when the window closes Kafka
Streams drops any out-of-order records.

We’ll revisit windowing and grace periods when we discuss timestamps later
in the chapter, but for now it’s enough to understand that timestamps on the



records drive the windowing behavior and grace is a way to ensure you’re
getting the most accurate calculations by including records that arrive out of
order.

8.12 Tumbling windows

Now let’s get back to our discussion of window types and move on to the
tumbling window. A tumbling window is actually a special case of a hopping
window where the advance of the window is the same as its size. Since it
advances the size of the window the calculation of the window contains no
duplicate results. Let’s take a look of an illustration showing the tumbling
window in action:

Figure 8.12. Tumbling windows move to the right by an advance equal to the size of the window



So you can see here how a tumbling window gets its name - thinking of the
window as square when it’s time to advance it "tumbles" into an entirely new
space, and as a consequence it’s guaranteed to not have any overlapping
results. Specifying to use a tumbling window is easy, you simple leave off the
advanceBy method and the size you set automatically becomes the advance
time. Here’s the code for setting up a tumbling window aggregation:

Listing 8.12. Setting up tumbling windows for an aggregation

//Some details omitted for clarity

countStream.groupByKey()

    .windowedBy(TimeWindows.ofSizeAndGrace(Duration.ofMinutes(1) #1

                            ,Duration.ofSeconds(30))) #2

    .count(Materialized.as("Tumbling-window-counting-store"))

From looking at annotation one using a tumbling window is simply a matter
not setting the advance time. Also I’d like to point out that in this example
you are using a grace period of thirty seconds, so there’s a second Duration
parameter passed into the TimeWindows.ofSizeAndGrace method. Note that
I’m only showing the required code for tumbling windows with a grace
period, but the source code contains a full runnable example.

The choice of using a tumbling or a hopping window depends entirely on
your use case. A hopping window gives you finer grained results with
potentially overlapping results, but the tumbling window result are a little
more course-grained but will not contain any overlapping records. One thing
to keep in mind is that a hopping window is re-evaluated more frequently, so
how often you want to observe the windowed results is one potential
determinant.

8.13 Session windows

Next up in our tour of window type is the session window. The session
window differs from hopping and tumbling in that it doesn’t have fixed size.
Instead you specify an inactivity gap; if there’s no new records within the gap
time, Kafka Streams closes the window. Any subsequent records coming in
after the inactivity gap result in creating a new session. Otherwise it will
continue to grow in size Looking at a visual pictorial of a session window is



in order to fully understand how it works:

Figure 8.13. Session windows continue to grow unless no new records arrive before the inactivity
gap expires

By looking at the illustration you can see that a session window is driven by
behavior, unlike the hopping or tumbling window which are governed by
time. Let’s take a look at an example of using a session window. As before
I’m only going to show the essential part here, the source code contains the
full, runnable example.



Listing 8.13. Setting up the session window

//Some details omitted

countStream.groupByKey()

 .windowedBy(SessionWindows.ofInactivityGapAndGrace(Duration.ofMinutes(1), #1

                      Duration.ofSeconds(30)))  #2

 .count(Materialized.as("Session-window-counting-store"))

So to use sessions with your aggregation is to use a SessionWindows factory
method. In this case you specify an inactivity period of one minute and you
include a grace period as well. The grace period for session window works in
the similar manner, it provides a time for Kafka Streams to include out-of-
order records arriving after the inactivity period passes. As with the other
window implementations, there’s also a method you can use to specify no
grace period.

The choice to use a session window vs. hopping/tumbling is more clear cut,
it’s best suited where you are tracking behavior. For example think of a user
on a web application, as long as they are active on the site you’ll want to get
calculate the aggregation and it’s impossible to know how long that could be.

8.14 Sliding windows

We’re now on to the last window type to cover, SlidingWindows. The sliding
window is a fixed-size window, but instead of specifying the size, it’s the
difference between timestamps that determine if a record is added to the
window. So it’s a combination of time-based window, but To fully
understand how a SlidingWindow operates, take a look at the following
illustration:

Figure 8.14. Sliding windows are fixed-size and slide along the time-axis



As you can see from the diagram, two records are in the same window if the
difference in the value of their timestamps falls within the window size. So as
the SlidingWindow slides along records may end up in several overlapping
calculations, but each window will contain a unique set of records. Another
way to look at the SlidingWindow is that as it moves along the time-axis,
records come into the window and others fall out on continual basis.

Here’s how you’d set up a sliding window for an aggregation:



Listing 8.14. Setting up the sliding window

//Some details omitted

 countStream.groupByKey()

    .windowedBy(SlidingWindows.ofTimeDifferenceWithNoGrace(

            Duration.ofSeconds(30))) #1

    .count(Materialized.as("Sliding-window-counting-store"))

As with the all the windowed options we’ve seen so far, it’s simply a matter
of providing a factory method for the desired windowing functionality. In this
case, you’ve set the time difference to thirty seconds with no grace period.
Just like the other windowing options, you could specify a grace period as
well with the SlidingWindows.ofTimeDifferenceWithGrace method.

The determining factor to go with a sliding window over a hopping or
tumbling window is a matter of how fine-grained of a calculation is desired.
When you need to generate a continual running average or sum is a great use-
case for the SlidingWindow.

You could achieve similar behavior with a HoppingWindow by using a small
advance interval. But this approach will result in poor performance because
the hopping windows will create redundant windows and performing
aggregation operations over them is inefficient. Compared to the
SlidingWindow that only creates windows containing distinct items so the
calculations are more efficient.

This wraps up our coverage of the different windowing types that Kafka
Streams provides, but before we move on to another section we will cover
one more feature that is available for all windows. As records flow into the
windowed aggregation processor, Kafka Streams continually updates the
aggregation with the new records. Kafka Streams updates the KTable with the
new aggregation, and it forwards the previous aggregation results to
downstream operators.

Remember that Kafka Streams uses caching for stateful operations, so every
update doesn’t flow downstream. It’s only on cache flush or a commit that
the updates make it downstream. But depending on the size of your window,
this means that you’ll get partial results of your windowing operations until



the window closes. In many cases receiving a constant flow of fresh
calculations is desired.

But in some cases, you may want to have a single, *final* result forwarded
downstream from a windowed aggregation. For example, consider a case
where your application is tracking IoT sensor readings with a count of
temperature readings that exceed a given threshold over the past 30 minutes.
If you find a temperature breach, you’ll want to send an alert. But with
regular updates, you’ll have to provide extra logic to determine if the result is
an intermediate or final one. Kafka Streams provides an elegant solution to
this situation, the ability to suppress intermediate results.

8.15 Suppression

For stateless operations the behavior of always forwarding a result is
expected in the nature of a stream processing system. But sometimes for a
windowed operation it’s desirable for a final result when the window closes.
For example, take the case of the tumbling window example above, instead
of incremental results, you want a single final count.

  Note

Final results are only available for windowed operations. With an event
streaming application like Kafka Streams, the number of incoming records is
infinite, so there’s never a point we can consider a record final. But since a
windowed aggregation represents a discrete point in time, the available
record when the window closes can be considered final.

So far you’ve learned about the different windowing operations available, but
they all yield intermediate results, now let’s suppose you only want the final
result from the window. For that you’d use the KTable.suppress operation.

The KTable.suppress method takes a Suppressed configuration object
which allows you to configure the suppression in two ways:

1. Strict - results are buffered by time and the buffering is strictly enforced



by never emitting a result early until the time bound is met
2. Eager - results are buffered by size (number of bytes) or by number of

records and when these conditions are met, results are emitted
downstream. This will reduce the number of downstream results, but
doesn’t guarantee a final one.

So you have two choices - the strict approach which guarantees a final result
or the eager one which could produce a final result, but also has the
likelihood of emitting a few intermediate results as well. The trade-off to
make can be thought of this way - with strict buffering, the size of the buffer
doesn’t have any bounds, so the possibility of getting an OutOfMemory
(OOM) exists, but with eager buffering you’ll never hit an OOM exception,
but you could end up with multiple results. While the possibility of incurring
an OOM may sound extreme, if you have feel the buffer won’t get that large
or you have a sufficiently large heap available then using the strict
configuration should be OK.

  Note

The possibility of an OOM is not as harsh as it seems at first glance. All Java
applications that use a data-structures in-memory, List, Set or Map have the
potential for causing an OOM if you continually add to them. To use them
effectively requires a balance of knowledge between the incoming data and
the amount of heap you have available.

Let’s take a look now at how at an example of using suppression.

Listing 8.15. Setting up suppression on a KStream aggregation

countStream.groupByKey()

    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))) #1

    .count(Materialized.as("Tumbling-window-suppressed-counting-store"))

    .suppress(untilWindowCloses(unbounded())) #2

So setting up suppression is as easy as adding one line of code, which you
can see at annotation two. In this case you’re suppressing all output until the
window closes along with an unbounded buffering of records. For testing
scenarios this is an acceptable configuration, but if running with such a



configuration in a production setting gives you pause, let’s quick show two
alternative settings.

First you can configure the final result with a maximum number records or
bytes, then if the constraint is violated, you can have a graceful shutdown:

Listing 8.16. Setting up suppression for final result controlling the potential shutdown

.suppress(untilWindowCloses(maxRecords(10_000) #1

                           .shutDownWhenFull()) #2

Here you’re specifying to go with an unbounded window, but you’d rather
have a graceful shutdown should the buffer start to grow beyond what you
feel is a reasonable amount. So in this case you specify the maximum number
of records is 10K and should the buffering exceed that number, the
application will shut down gracefully.

Note that we technically could have used a shutDownWhenFull with our
original suppression example, but the default limit is LONG.MAX_VALUE, so in
practice most likely that you’d get an OOM exception before reaching that
size constraint. With this change you’re favoring shutting down before
emitting a possible non-final result.

On the other hand, if you’d rather trade-off a possible non-final result over
shutting down you could use a configuration like this:

Listing 8.17. Using suppression emulating a final result with a possible early result instead of
shutting down

 .suppress(untilTimeLimit(Duration.ofMinutes(1),  #1

                          maxRecords(1000)      #2

                         .emitEarlyWhenFull())) #3

With this example, you’ve set the time limit to match the size of the window
(plus any grace period) so you’re reasonable sure to get a final result, but
you’ve set the maximum size of the buffer, and if the number of records
reaches that size, the processor will forward a record regardless if the time
limit is reached or not. One thing to bear in mind is if you want to set the time
limit to correspond to the window closing, you need to include the grace



period, if any, as well in the time limit.

This wraps up our discussion on suppression of aggregations in Kafka
Steams. Even though the examples in the suppression section only
demonstrated using the KStream and windowed aggregations, you could
apply the same principal to non-windowed KTable aggregations by using the
time-limit API of suppression.

Now let’s move on to the last section of this chapter, timestamps in Kafka
Streams.

8.16 Timestamps in Kafka Streams

Earlier in the book, we discussed timestamps in Kafka records. In this
section, we’ll discuss the use of timestamps in Kafka Streams. Timestamps
play a role in key areas of Kafka Streams functionality:

Joining streams
Updating a changelog (KTable API)
Deciding when the Processor.punctuate() method is triggered
(Processor API)
Window behavior

With stream processing in general, you can group timestamps into three
categories, as shown in figure 8.10:

Event time — A timestamp set when the event occurred, usually
embedded in the object used to represent the event. For our purposes,
we’ll consider the timestamp set when the ProducerRecord is created as
the event time as well.
Ingestion time — A timestamp set when the data first enters the data
processing pipeline. You can consider the timestamp set by the Kafka
broker (assuming a configuration setting of LogAppendTime) to be
ingestion time.
Processing time — A timestamp set when the data or event record first
starts to flow through a processing pipeline.



Figure 8.15. There are three categories of timestamps in Kafka Streams: event time, ingestion
time, and processing time.





You’ll see in this section how the Kafka Streams by using a
TimestampExtractor, gives you the ability to chose which timestamp
semantics you want to support.

  Note

So far, we’ve had an implicit assumption that clients and brokers are located
in the same time zone, but that might not always be the case. When using
timestamps, it’s safest to normalize the times using the UTC time zone,
eliminating any confusion over which brokers and clients are using which
time zones.

In most cases using event-time semantics, the timestamp placed in the
metadata by the ProducerRecord is sufficient. But there may be cases when
you have different needs. Consider these examples:

You’re sending messages to Kafka with events that have timestamps
recorded in the message objects. There’s some lag time in when these
event objects are made available to the Kafka producer, so you want to
consider only the embedded timestamp.
You want to consider the time when your Kafka Streams application
processes records as opposed to using the timestamps of the records.

8.17 The TimestampExtractor

To enable different processing semantics, Kafka Stream provides a
TimestampExtractor interface with one abstract and four concrete
implementations. If you need to work with timestamps embedded in the
record values, you’ll need to create a custom TimestampExtractor
implementation. Let’s briefly look at the included implementations and
implement a custom TimestampExtractor.

Almost all of the provided TimestampExtractor implementations work with
timestamps set by the producer or broker in the message metadata, thus
providing either event-time processing semantics (timestamp set by the



producer) or log-append-time processing semantics (timestamp set by the
broker). Figure 4.19 demonstrates pulling the timestamp from the
ConsumerRecord object.

Figure 8.16. Timestamps in the ConsumerRecord object: either the producer or broker set this
timestamp, depending on your configuration.

Although you’re assuming the default configuration setting of CreateTime
for the timestamp, bear in mind that if you were to use LogAppendTime, this
would return the timestamp value for when the Kafka broker appended the
record to the log. ExtractRecordMetadataTimestamp is an abstract class that
provides the core functionality for extracting the metadata timestamp from
the ConsumerRecord. Most of the concrete implementations extend this class.
Implementors override the abstract method,
ExtractRecordMetadataTimestamp.onInvalidTimestamp, to handle invalid



timestamps (when the timestamp is less than 0).

Here’s a list of classes that extend the ExtractRecordMetadataTimestamp
class:

FailOnInvalidTimestamp — Throws an exception in the case of an
invalid timestamp.
LogAndSkipOnInvalidTimestamp — Returns the invalid timestamp and
logs a warning message that the record will be discarded due to the
invalid timestamp.
UsePreviousTimeOnInvalidTimestamp — In the case of an invalid
timestamp, the last valid extracted timestamp is returned.

We’ve covered the event-time timestamp extractors, but there’s one more
provided timestamp extractor to cover.

8.18 WallclockTimestampExtractor

WallclockTimestampExtractor provides process-time semantics and doesn’t
extract any timestamps. Instead, it returns the time in milliseconds by calling
the System .currentTimeMillis() method. You’d use the
WallclockTimestampExtractor when you need processing time semantics.

That’s it for the provided timestamp extractors. Next, we’ll look at how you
can create a custom version.

8.19 Custom TimestampExtractor

To work with timestamps (or calculate one) in the value object from the
ConsumerRecord, you’ll need a custom extractor that implements the
TimestampExtractor interface. For example, let’s say you are working with
IoT sensors and part of the information is the exact time of the sensor
reading. It’s important for your calculations to have the precise timestamp, so
you’ll want to use the one embedded in the record sent to Kafka and not the
one set by the producer.

The figure here depicts using the timestamp embedded in the value object



versus one set by Kafka (either producer or broker).

Figure 8.17. A custom TimestampExtractor provides a timestamp based on the value contained in
the ConsumerRecord. This timestamp could be an existing value or one calculated from properties
contained in the value object.

Here’s an example of a TimestampExtractor implementation (found in
src/main/
java/bbejeck/chapter_4/timestamp_extractor/TransactionTimestampExtractor.java),



also used in the join example from listing 4.12 in the section “Implementing
the Join” (although not shown in the text, because it’s a configuration
parameter).

Listing 8.18. Custom TimestampExtractor

public class TransactionTimestampExtractor implements TimestampExtractor {

    @Override

    public long extract(ConsumerRecord<Object, Object> record,

         long previousTimestamp) {

        Purchase purchaseTransaction = (Purchase) record.value(); 

        return purchaseTransaction.getPurchaseDate().getTime();#2

    }

}

In the join example, you used a custom TimestampExtractor because you
wanted to use the timestamps of the actual purchase time. This approach
allows you to join the records even if there are delays in delivery or out-of-
order arrivals.

8.20 Specifying a TimestampExtractor

Now that we’ve discussed how timestamp extractors work, let’s tell the
application which one to use. You have two choices for specifying timestamp
extractors.

The first option is to set a global timestamp extractor, specified in the
properties when setting up your Kafka Streams application. If no property is
set, the default setting is FailOnInvalidTimestamp.class. For example, the
following code would configure the TransactionTimestampExtractor via
properties when setting up the application:

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,

         TransactionTimestampExtractor.class);

The second option is to provide a TimestampExtractor instance via a
Consumed object:

Consumed.with(Serdes.String(), purchaseSerde)



         .withTimestampExtractor(new TransactionTimestampExtractor()))

The advantage of doing this is that you have one TimestampExtractor per
input source, whereas the other option provides a TimestampExtractor
instance used application wide.

8.21 Streamtime

Before we end this chapter, we should discuss how Kafka Streams keeps
track of time while processing, that is by using streamtime. Streamtime is not
another category of timestamp, it is the current time in a Kafka Streams
processor. As Kafka Streams selects the next record to process by timestamp
and as processing continues the values will increase. Streamtime is the largest
timestamp seen by a processor and represents the current time for it. Since a
Kafka Streams application is broken down into tasks and a task is responsible
for records from a given partition, the value of streamtime is not global in a
Kafka Streams application, it’s only unique at the task level.

Streamtime only moves forward never backwards. Out of order records are
always processed, with the exception of windowed operations depending on
the grace period, but its timestamp does not affect streamtime. Here’s an
illustration showing how streamtime works in a Kafka Streams application.

Figure 8.18. Streamtime represents the highest timestamp seen so far and is the current time of
the application



So as the illustration shows, the current time of the application moves
forward as records go through the topology and out of order records still go
through the application but do not change streamtime.

Streamtime is vital for the correctness of windowed operations as a window
only advances and closes as streamtime moves forward. If the source topics
for your application are bursty or have a sporadic sustain volume of records,
you might encounter a situation where you don’t observe windowed results.
This apparent lack of processing is due to the fact that there hasn’t been
enough incoming records to move streamtime forward to force window
calculations.

This effect that timestamps have on operations in Kafka Streams is important



to keep in mind when testing applications, as manually adjusting the value of
timestamps can help you drive useful tests to validate behavior. We’ll talk
more about using timestamps for testing in the chapter on testing.

Streamtime also comes into play when you have punctuations which we’ll
cover in the next chapter when we discuss the Processor API.

8.22 Summary

The KTable is an update stream and models a database table where the
primary key is the key from the key-value pair in the stream. Records
with the same key are considered updates to previous ones with the
same key. Aggregations with the KTable are analogous to running a
Select…. Group By SQL query against a relational database table.
Performing joins with a KStream against a KTable is a great way to
enrich an event stream. The KStream contains the event data and the
KTable contains the facts or dimension data.
It’s possible to perform joins between two KTables and you can also do
a foreign key join between two KTables
The GlobalKTable contains all records of the underlying topic as it’s not
sharded so each application instance contains all the records making it
suitable for acting as a reference table. Joins with the GlobalKTable
don’t require co-partitioning with the KStream, you can supply a
function that calculates the correct key for the join.
Windowing is a way to calculate aggregations for a given period of time.
Like all other operations in Kafka Streams, new incoming records mean
an update is released downstream, but windowed operations can use
suppression to only have a single final result when the window closes.
There are four types of windows hopping, tumbling, sliding, and
session. Hopping and tumbling windows are fixed in size by time.
Sliding windows are fixed in size by time, but record behavior drives
record inclusion in a window. Session windows are completely driven
by record behavior, and the window can continue to grow as long as
incoming records are within the inactivity gap.
Timestamps drive the behavior in a Kafka Streams application and this
most obvious in windowed operations as the timestamps of the records
drive the opening and closing of these operations. Streamtime is the



highest timestamp viewed by a Kafka Streams application during it’s
processing.
Kafka Streams provides different TimestampExtractor instances so you
can use different timestamp semantics event-time, log-append-time, or
processing time in your application.

[6] This section derived information from Jay Kreps’s “Introducing Kafka
Streams: Stream Processing Made Simple” (mng.bz/49HO) and “The Log:
What Every Software Engineer Should Know About Real-time Data’s
Unifying Abstraction” (mng.bz/eE3w).



9 The Processor API
This chapter covers

Evaluating higher-level abstractions versus more control
Working with sources, processors, and sinks to create a topology
Digging deeper into the Processor API with a stock analysis processor
Creating a co-grouping processor
Integrating the Processor API and the Kafka Streams API

Up to this point in the book, we’ve been working with the high-level Kafka
Streams API. It’s a DSL that allows developers to create robust applications
with minimal code. The ability to quickly put together processing topologies
is an important feature of the Kafka Streams DSL. It allows you to iterate
quickly to flesh out ideas for working on your data without getting bogged
down in the intricate setup details that some other frameworks may need.

But at some point, even when working with the best of tools, you’ll come up
against one of those one-off situations: a problem that requires you to deviate
from the traditional path. Whatever the particular case may be, you need a
way to dig down and write some code that just isn’t possible with a higher-
level abstraction.

9.1 The trade-offs of higher-level abstractions vs.
more control

A classic example of trading off higher-level abstractions versus gaining
more control is using object-relational mapping (ORM) frameworks. A good
ORM framework maps your domain objects to database tables and creates the
correct SQL queries for you at runtime. When you have simple-to-moderate
SQL operations (simple SELECT or JOIN statements), using the ORM
framework saves you a lot of time. But no matter how good the ORM
framework is, there will inevitably be those few queries (very complex joins,
SELECT statements with nested subselect statements) that just don’t work the



way you want. You need to write raw SQL to get the information from the
database in the format you need. You can see the trade-off between a higher-
level abstraction versus more programmatic control here. Often, you’ll be
able to mix the raw SQL with the higher-level mappings provided with the
framework.

This chapter is about those times when you want to do stream processing in a
way that the Kafka Streams DSL doesn’t make easy. For example, you’ve
seen from working with the KTable API that the framework controls the
timing of forwarding records downstream. You may find yourself in a
situation where you want explicit control over when a record is sent. You
might be tracking trades on Wall Street, and you only want to forward
records when a stock crosses a particular price threshold. To gain this type of
control, you can use the Processor API. What the Processor API lacks in ease
of development, it makes up for in power. You can write custom processors
to do almost anything you want.

In this chapter, you’ll learn how to use the Processor API to handle situations
like these:

Schedule actions to occur at regular intervals (either based on
timestamps in the records or wall-clock time).
Gain full control over when records are sent downstream.
Forward records to specific child nodes.
Create functionality that doesn’t exist in the Kafka Streams API (you’ll
see an example of this when we build a co-grouping processor).

First, let’s look at how to use the Processor API by developing a topology
step by step.

9.2 Working with sources, processors, and sinks to
create a topology

Let’s say you’re the owner of a successful brewery (Pops Hops) with several
locations. You’ve recently expanded your business to accept online orders
from distributors, including international sales to Europe. You want to route
orders within the company based on whether the order is domestic or



international, converting any European sales from British pounds or euros to
US dollars.

If you were to sketch out the flow of operation, it would look something like
figure 9.1. In building this example, you’ll see how the Processor API gives
you the flexibility to select specific child nodes when forwarding records.
Let’s start by creating a source node

Figure 9.1. Beer sales distribution pipeline

9.2.1 Adding a source node



The first step in constructing a topology is establishing the source nodes. The
following listing (found in
src/main/java/bbejeck/chapter_9/PopsHopsApplication.java) sets the data
source for the new topology.

Listing 9.1. Creating the beer application source node

topology.addSource(LATEST,                         #1

                  purchaseSourceNodeName,                  #2

                  new UsePartitionTimeOnInvalidTimestamp(),            #3

                  stringDeserializer,                      #4

                  beerPurchaseDeserializer,                #5

                  INPUT_TOPIC) #6

In the Topology.addSource() method, there are some parameters you didn’t
use in the DSL. First, you name the source node. When you used the Kafka
Streams DSL, you didn’t need to pass in a name because the KStream
instance generated a name for the node. But when you use the Processor API,
you need to provide the names of the nodes in the topology. The node name
is used to wire up a child node to a parent node.

Next, you specify the timestamp extractor to use with this source. Here,
you’re using the UsePartitionTimeOnInvalidTimestamp class which if the
incoming timestamp is invalid (a negative number), it will set it to be the
highest value so far (stream time) for the partition of the incoming record.

Next, you provide a key deserializer and a value deserializer, which
represents another departure from the Kafka Streams DSL. In the DSL, you
supplied Serde instances when creating source or sink nodes. The Serde
itself contains a serializer and deserializer, and the Kafka Streams DSL uses
the appropriate one, depending on whether you’re going from object to byte
array, or from byte array to object. Because the Processor API is a lower-
level abstraction, you directly provide a deserializer when creating a source
node and a serializer when creating a sink node. Finally, you provide the
name of the source topic.

Let’s next look at how you’ll add processor nodes that do something with the
incoming records.



9.2.2 Adding a processor node

Now, you’ll add a processor to work with the records coming in from the
source node (found in
src/main/java/bbejeck/chapter_9/PopsHopsApplication.java). Let’s first
discuss how to wire up the processors, then we’ll cover the functionality of
the added processor. .Adding a processor node

//Some details omitted for clarity

 Map<String, Double> conversionRates = Map.of("EURO", 1.1, "POUND", 1.31);

topology.addSource(LATEST,

                  purchaseSourceNodeName,

                  new UsePreviousTimeOnInvalidTimestamp(),

                  stringDeserializer,

                  beerPurchaseDeserializer,

                  INPUT_TOPIC)

       .addProcessor(purchaseProcessor, #1

                     () -> new BeerPurchaseProcessor( #2

                                            domesticSalesSink, #3

                                            internationalSalesSink,

                                            conversionRates),

                    purchaseSourceNodeName) #4

This code uses the fluent interface pattern for constructing the topology. The
difference from the Kafka Streams API lies in the return type. With the Kafka
Streams API, every call on a KStream operator returns a new KStream or
KTable instance. In the Processor API, each call to Topology returns the same
Topology instance.

In the second annotation, you pass in a ProcessorSupplier. The
Topology.addProcessor method takes an instance of a ProcessorSupplier
interface for the second parameter, but because the ProcessorSupplier is a
single-method interface, you can replace it with a lambda expression. The
third annotation highlights

The key point in this section is that the third parameter,
purchaseSourceNodeName, of the addProcessor() method is the same as the
second parameter of the addSource() method, as illustrated in figure 9.2.
This establishes the parent-child relationship between nodes. The parent-child
relationship, in turn, determines how records move from one processor to the



next in a Kafka Streams application. Figure 9.3 reviews what you’ve built so
far.

Figure 9.2. Wiring up parent and child nodes in the Processor API

Figure 9.3. The Processor API topology so far, including node names and parent names



Let’s take a second to discuss the BeerPurchaseProcessor, created in listing
9.1, functions. The processor has two responsibilities:

Convert international sales amounts (in euros) to US dollars.
Based on the origin of the sale (domestic or international), route the
record to the appropriate sink node.

All of this takes place in the process() method. To quickly summarize,
here’s what the process() method does:

1. Check the currency type. If it’s not in dollars, convert it to dollars.
2. If it’s a non-domestic sale, forward the updated record to the

international-sales topic.
3. Otherwise, forward the record directly to the domestic-sales topic.

Here’s the code for this processor (found in src/main/java/bbejeck/chapter_9/
processor/BearPurchaseProcessor.java).



Listing 9.2. BeerPurchaseProcessor

public class BeerPurchaseProcessor extends

   ContextualProcessor<String, BeerPurchase, String, BeerPurchase> {

    private final String domesticSalesNode;

    private final String internationalSalesNode;

    private final Map<String, Double> conversionRates;

    public BeerPurchaseProcessor(String domesticSalesNode,

                                 String internationalSalesNode,

                                 Map<String,Double> conversionRates) {

        this.domesticSalesNode = domesticSalesNode;     #1

        this.internationalSalesNode = internationalSalesNode; #1

        this.conversionRates = conversionRates;

    }

    @Override

    public void process(Record<String, BeerPurchase> beerPurchaseRecord) {   

        BeerPurchase beerPurchase = beerPurchaseRecord.value();

        String key  = beerPurchaseRecord.key();

        BeerPurchase.Currency transactionCurrency =

              beerPurchase.getCurrency();

        if (transactionCurrency != BeerPurchase.Currency.DOLLAR) {

            BeerPurchase.Builder builder =

                   BeerPurchase.newBuilder(beerPurchase);

            double internationalSaleAmount = beerPurchase.getTotalSale();

            String pattern = "###.##";

            DecimalFormat decimalFormat = new DecimalFormat(pattern);

            builder.setCurrency(BeerPurchase.Currency.DOLLAR);

            builder.setTotalSale(Double.parseDouble(decimalFormat.format(

                   convertToDollars(transactionCurrency.name(),

                   internationalSaleAmount))));         #3

            Record<String, BeerPurchase> convertedBeerPurchaseRecord =

                       new Record<>(key,builder.build(),

                                    beerPurchaseRecord.timestamp());

            context().forward(convertedBeerPurchaseRecord,   #4

                              internationalSalesNode);

        } else {

            context().forward(beerPurchaseRecord, domesticSalesNode); 

        }

}

This example extends ContextualProcessor, a class with overrides for



Processor interface methods, except for the process() method. The
Processor.process() method is where you perform actions on the records
flowing through the topology.

  Note

The Processor interface provides the init(), process(), and close()
methods. The Processor is the main driver of any application logic that
works with records in your streaming application. In the examples, you’ll
usually extend the ContextualProcessor class, so you’ll only override the
methods you want. The ContextualProcessor class initializes the
ProcessorContext for you, so if you don’t need to do any setup in your
class, you don’t need to override the init() method.

The last few lines of listing 9.3 demonstrate the main point of this example—
the ability to forward records to specific child nodes. The context() method
in these lines retrieves a reference to the ProcessorContext object for this
processor. All processors in a topology receive a reference to the
ProcessorContext via the init() method, which is executed by the
StreamTask when initializing the topology.

Now that you’ve seen how you can process records, the next step is to
connect a sink node (topic) so you can write records back to Kafka.

9.2.3 Adding a sink node

By now, you probably have a good feel for the flow of using the Processor
API. To add a source, you used addSource, and for adding a processor, you
used addProcessor. As you might imagine, you’ll use the addSink() method
to wire up a sink node (topic) to a processor node. Figure 9.4 shows the
updated topology.

Figure 9.4. Completing the topology by adding sink nodes



You can update the topology you’re building by adding sink nodes in the



code now (found in
src/main/java/bbejeck/chapter_9/PopsHopsApplication.java).

Listing 9.3. Adding sink nodes

topology.addSource(LATEST,

                  purchaseSourceNodeName,

                  new UsePreviousTimeOnInvalidTimestamp(),

                  stringDeserializer,

                  beerPurchaseDeserializer,

                  INPUT_TOPIC)

       .addProcessor(purchaseProcessor,

                     () -> new BeerPurchaseProcessor(

                                            domesticSalesSink,

                                            internationalSalesSink,

                                            conversionRates),

                    purchaseSourceNodeName)

       .addSink(internationalSalesSink,   #1

                "international-sales",    #2

                stringSerializer,         #3

                beerPurchaseSerializer,  #3

                purchaseProcessor)       #4

       .addSink(domesticSalesSink,      #5

                "domestic-sales",      #6

                stringSerializer,        #7

                beerPurchaseSerializer,  #8

                purchaseProcessor);     #9

In this listing, you add two sink nodes, one for domestic sales and another for
international. Depending on the currency of the transaction, you’ll write the
records out to the appropriate topic.

The key point to notice when adding two sink nodes here is that both have the
same parent name. By supplying the same parent name to both sink nodes,
you’ve wired both of them to your processor (as shown in figure 6.4).

You’ve seen in this first example how you can wire topologies together and
forward records to specific child nodes. Although the Processor API is a little
more verbose than the Kafka Streams API, it’s still easy to construct
topologies. The next example will explore more of the flexibility the
Processor API provides.



9.3 Digging deeper into the Processor API with a
stock analysis processor

You’ll now return to the world of finance and put on your day trading hat. As
a day trader, you want to analyze how stock prices are changing with the
intent of picking the best time to buy and sell. The goal is to take advantage
of market fluctuations and make a quick profit. We’ll consider a few key
indicators, hoping they’ll indicate when you should make a move.

This is the list of requirements:

Show the current value of the stock.
Indicate whether the price per share is trending up or down.
Include the total share volume so far, and whether the volume is
trending up or down.
Only send records downstream for stocks displaying 2% trending (up or
down).
Collect a minimum of 20 samples for a given stock before performing
any calculations.

Let’s walk through how you might handle this analysis manually. Figure 6.5
shows the sort of decision tree you’ll want to create to help make decisions.

Figure 9.5. Stock trend updates



There are a handful of calculations you’ll need to perform for your analysis.
Additionally, you’ll use these calculation results to determine if and when
you should forward records downstream.

This restriction on sending records means you can’t rely on the standard
mechanisms of commit time or cache flushes to handle the flow for you,



which rules out using the Kafka Streams API. It goes without saying that
you’ll also require state, so you can keep track of changes over time. What
you need here is the ability to write a custom processor. Let’s look at the
solution to the problem.

For demo purposes only

I’m pretty sure it goes without saying, but I’ll state the obvious anyway: these
stock price evaluations are for demonstration purposes only. Please don’t
infer any real market-forecasting ability from this example. This model bears
no similarity to a real-life approach and is presented only to demonstrate a
more complex processing situation. I’m certainly not a day trader!

9.3.1 The stock-performance processor application

Here’s the topology for the stock-performance application (found in
src/main/java/ bbejeck/chapter_6/StockPerformanceApplication.java).

Listing 9.4. Stock-performance application with custom processor

Topology topology = new Topology();

 String stocksStateStore = "stock-performance-store";

 double differentialThreshold = 0.02;  #1

KeyValueBytesStoreSupplier storeSupplier =

 Stores.inMemoryKeyValueStore(stocksStateStore); #2

StoreBuilder<KeyValueStore<String, StockPerformance>> storeBuilder

 = Stores.keyValueStoreBuilder(

 storeSupplier, Serdes.String(), stockPerformanceSerde);  #3

  topology.addSource("stocks-source",

                    stringDeserializer,

                    stockTransactionDeserializer,

                    "stock-transactions")

          .addProcessor("stocks-processor",  #4

                    new StockPerformanceProcessorSupplier(storeBuilder),

                    "stocks-source")

          .addSink("stocks-sink",

                   "stock-performance",

                   stringSerializer,

                   stockPerformanceSerializer,



                   "stocks-processor");  #5

You should take note that in this example we’ve used a concrete
implementation of the ProcessorSupplier instead of a lambda expression at
annotation four. This is because the ProcessorSupplier interface provides a
stores method that will automatically wire up the processor with any
StoreBuilder instances you provide. Here’s a look at the
StockPerformanceProcessorSupplier source code:

Listing 9.5. ProcessorSupplier impementation

public class StockPerformanceProcessorSupplier

       implements ProcessorSupplier<String, Transaction,

                                    String, StockPerformance> {

    StoreBuilder<?> storeBuilder;

    public StockPerformanceProcessorSupplier(StoreBuilder<?> storeBuilder) {

        this.storeBuilder = storeBuilder;

    }

    @Override

    public Processor<String, Transaction, String, StockPerformance> get() {

        return new StockPerformanceProcessor(storeBuilder.name()); 

    }

    @Override

    public Set<StoreBuilder<?>> stores() {

        return Collections.singleton(storeBuilder); #2

    }

}

With the ProcessorSupplier.stores method, you have a way to
automatically wire up StateStore instances to processors, which makes
building topology a bit simpler as you don’t need to call
Topology.addStateStore with the names of the processors having access to
the store.

Since this stock performance topology has the same flow as the previous
example, we’ll focus on the new features in the processor. In the previous
example, you don’t have any setup to do, so you rely on the
ContextualProcessor.init method to initialize the ProcessorContext
object. In this example, however, you need to use a state store, and you also



want to schedule when you emit records, instead of forwarding records each
time you receive them.

Let’s look first at the init() method in the processor (found in src/main/java/
bbejeck/chapter_6/processor/StockPerformanceProcessor.java).

init() method tasks

@Override

public void init(ProcessorContext<String, StockPerformance> context) {

  super.init(processorContext);                          #1

  keyValueStore = context().getStateStore(stateStoreName);   #2

  StockPerformancePunctuator punctuator =

   new StockPerformancePunctuator(differentialThreshold,

                              context(),

                              keyValueStore); #3

  context().schedule(10000,

                     PunctuationType.STREAM_TIME,

                     punctuator);   #4

 }

}

First, you need to initialize the ContextualProcessor with the
ProcessorContext, so you call the init() method on the superclass. Next,
you grab a reference to the state store you created in the topology. All you
need to do here is set the state store to a variable for use later in the processor.
Listing 9.5 also introduces a Punctuator, an interface that’s a callback to
handle scheduled execution of processor logic but encapsulated in the
Punctuator.punctuate method.

  Tip

The ProcessorContext.schedule(Duration, PunctuationType,
Punctuator) method returns a type of Cancellable, allowing you to cancel a
punctuation and manage more-advanced scenarios, like those found in the
“Punctuate Use Cases” discussion (mng.bz/YSKF). I don’t have examples or
a discussion here, but I present some examples in
src/main/java/bbejeck/chapter_9/cancellation.

In the last line of listing 9.5, you use the ProcessorContext to schedule the



Punctuator to execute every 10 seconds. The second parameter,
PunctuationType.WALL_CLOCK_TIME , specifies that you want to call
Punctuator.punctuate every 10 seconds based on the timestamps of the
data. Your other option is to specify PunctuationType.WALL_CLOCK_TIME,
which means the execution of Punctuator.punctuate is scheduled every 10
seconds but driven by the system time of the Kafka Streams environment.
Let’s take a moment to discuss the difference between these two
Punctuation-Type settings.

Punctuation semantics

Let’s start our conversation on punctuation semantics with STREAM_TIME,
because it requires a little more explanation. Figure 6.6 illustrates the concept
of stream time. Let’s walk through some details to gain a deeper
understanding of how the schedule is determined (note that some of the
Kafka Stream internals are not shown):

1. The StreamTask extracts the smallest timestamp from the
PartitionGroup. The PartitionGroup is a set of partitions for a given
StreamThread, and it contains all timestamp information for all
partitions in the group.

2. During the processing of records, the StreamThread iterates over its
StreamTask object, and each task will end up calling punctuate for each
of its processors that are eligible for punctuation. Recall that you collect
a minimum of 20 trades before you examine an individual stock’s
performance.

3. If the timestamp from the last execution of punctuate (plus the
scheduled time) is less than or equal to the extracted timestamp from the
Partition-Group, then Kafka Streams calls that processor’s
punctuate() method.

Figure 9.6. Punctuation scheduling using STREAM_TIME





The key point here is that the application advances timestamps via the
TimestampExtractor, so punctuate() calls are consistent only if data arrives
at a constant rate. If your flow of data is sporadic, the punctuate() method
won’t get executed at the regularly scheduled intervals.

With PunctuationType.WALL_CLOCK_TIME, on the other hand, the execution
of Punctuator.punctuate is more predictable, as it uses wall-clock time.
Note that system-time semantics is best effort—wall-clock time is advanced
in the polling interval, and the granularity is dependent on how long it takes
to complete a polling cycle. So, with the example in listing 9.6, you can
expect the punctuation activity to be executed closer to every 10 seconds,
regardless of data activity.

Which approach you choose to use is entirely dependent on your needs. If
you need some activity performed on a regular basis, regardless of data flow,
using system time is probably the best bet. On the other hand, if you only
need calculations performed on incoming data, and some lag time between
executions is acceptable, try stream-time semantics.

  Note

Before Kafka 0.11.0, punctuation involved the
ProcessorContext.schedule(long time) method, which in turn called the
Processor.punctuate method at the scheduled interval. This approach only
worked on stream-time semantics, and both methods are now deprecated. I
mention deprecated methods in this book, but I only use the latest
punctuation methods in the examples.

Now that we’ve covered scheduling and punctuation, let’s move on to
handling incoming records.

9.3.2 The process() method

The process() method is where you’ll perform all of your calculations to
evaluate stock performance. There are several steps to take when you receive
a record:



1. Check the state store to see if you have a corresponding
StockPerformance object for the record’s stock ticker symbol.

2. If the store doesn’t contain the StockPerformance object, one is created.
Then, the StockPerfomance instance adds the current share price and
share volume and updates your calculations.

3. Start performing calculations once you hit 20 transactions for any given
stock.

Although financial analysis is beyond the scope of this book, we should take
a minute to look at the calculations. For both the share price and volume,
you’re going to perform a simple moving average (SMA). In the financial-
trading world, SMAs are used to calculate the average for datasets of size N.

For this example, you’ll set N to 20. Setting a maximum size means that as
new trades come in, you collect the share price and number of shares traded
for the first 20 transactions. Once you hit that threshold, you remove the
oldest value and add the latest one. Using the SMA, you get a rolling average
of stock price and volume over the last 20 trades. It’s important to note you
won’t have to recalculate the entire amount as new values come in.

Figure 9.7 provides a high-level walk-through of the process() method,
illustrating what you’d do if you were to perform these steps manually. The
process() method is where you’ll perform all the calculations.

Figure 9.7. Stock analysis process() method walk-through



Now, let’s look at the code that makes up the process() method (found in
src/main/
java/bbejeck/chapter_6/processor/StockPerformanceProcessor.java).

process() implementation

@Override

public void process(String symbol, StockTransaction transaction) {



 StockPerformance stockPerformance = keyValueStore.get(symbol);  #1

 if (stockPerformance == null) {

  stockPerformance = new StockPerformance();  #2

 }

 stockPerformance.updatePriceStats(transaction.getSharePrice());  #3

 stockPerformance.updateVolumeStats(transaction.getShares());  #4

 stockPerformance.setLastUpdateSent(Instant.now()); #5

 keyValueStore.put(symbol, stockPerformance);  #6

}

In the process() method, you take the latest share price and the number of
shares involved in the transaction and add them to the StockPerformance
object. Notice that all details of how you perform the updates are abstracted
inside the StockPerformance object. Keeping most of the business logic out
of the processor is a good idea—we’ll come back to that point when we cover
testing in chapter 8.

There are two key calculations: determining the moving average, and
calculating the differential of stock price/volume from the current average.
You don’t want to calculate an average until you’ve collected data from 20
transactions, so you defer doing anything until the processor receives 20
trades. When you have data from 20 trades for an individual stock, you
calculate your first average. Then, you take the current value of the stock
price or a number of shares and divide by the moving average, converting the
result to a percentage.

  Note

If you want to see the calculations, the StockPerformance code can be found
in src/main/java/bejeck/model/StockPerformance.java.

In the Processor example in listing 6.3, once you worked your way through
the process() method, you forwarded the records downstream. In this case,
you store the final results in the state store and leave the forwarding of
records to the Punctuator-.punctuate method.



9.3.3 The punctuator execution

We’ve already discussed the punctuation semantics and scheduling, so let’s
jump straight into the code for the Punctuator.punctuate method (found in
src/main/
java/bejeck/chapter_9/processor/punctuator/StockPerformancePunctuator.java).

Listing 9.6. Punctuation code

@Override

public void punctuate(long timestamp) {

    try (KeyValueIterator<String, StockPerformance> performanceIterator

                           = keyValueStore.all()) { #1

        while (performanceIterator.hasNext()) {

            KeyValue<String, StockPerformance> keyValue =

                            performanceIterator.next();

            String key = keyValue.key;

            StockPerformance stockPerformance = keyValue.value;

            if (stockPerformance != null) {

                if (stockPerformance.getPriceDifferential() >=

                                  differentialThreshold ||

                        stockPerformance.getShareDifferential() >=

                                    differentialThreshold) { #2

                    context.forward(new Record<>(key,           #3

                                                 stockPerformance,

                                                 timestamp));

                }

            }

        }

    }

}

The procedure in the Punctuator.punctuate method is simple. You iterate
over the key/value pairs in the state store, and if the value has crossed over
the predefined threshold, you forward the record downstream.

An important concept to remember here is that, whereas before you relied on
a combination of committing or cache flushing to forward records, now you
define the terms for when records get forwarded. Additionally, even though
you expect to execute this code every 10 seconds, that doesn’t guarantee



you’ll emit records. They must meet the differential threshold. Also note that
the Processor.process and Punctuator .punctuate methods aren’t called
concurrently.

  Note

Although we’re demonstrating access to a state store, it’s a good time to
review Kafka Streams’ architecture and go over a few key points. Each
StreamTask has its own copy of a local state store, and StreamThread objects
don’t share tasks or data. As records make their way through the topology,
each node is visited in a depth-first manner, meaning there’s never concurrent
access to state stores from any given processor.

This example has given you an excellent introduction to writing a custom
processor. You can also take writing custom processors a bit further by
creating an entirely new way of aggregating data that doesn’t currently exist
in the API. With this in mind, we’ll move on to adding data-driven
aggregation.

9.4 Data Driven Aggregation

We discussed aggregation in chapter 7 when we covered stateful operations
in Kafka Streams. But imagine you have some different requirements for
creating an aggregation, specifically instead of having windows based on
time, you want to have a "window" based on certain aspects of the incoming
events. You’ll want to only include events that meet a given criteria in an
aggregation, and forward the results once an incoming record doesn’t meet
that criteria any longer.

For example, let’s say you are responsible for a production line at a major
manufacturer, Waldo Widgets. In an effort to control costs and improve
efficiency, you installed several sensors that continually send information
about different important indicators in the manufacturing process. All the
sensors send their information into Kafka. You’ve determined over time that
the temperature sensors are one of the best leading indicator for trouble in the
manufacturing process. It seems that prolonged temparature spikes are almost



always followed by a costly shutdown of the production line, sometimes for
hours until a machine can be serviced or in the worst case, replaced.

So you’ve determined that you’ll need to create a Kafka Streams application
to help with the monitoring of the temperature sensor readings. From your
experience you’ve developed some requirements of the exact information you
really need. What you’ve been able to put together over the years is that when
a machine is about to have trouble, it will start with smaller spikes in
temperature reading leading to progressively longer periods of increased
temperature over time.

So what you need is an aggregation of only the increased temperatures,
getting a constant flow of all temperature readings is actually
conterproductive, it’s simply too much information to be useful otherwise.
You spend some time coming up the precise requirements you want from
your new application:

If the temperature is below a given threshold, simply ignore it
Once it rises above the threshold, start an aggregation window
Continue the aggregation as long as the readings exceed the threshold
When the readings reach a given number emit the aggregation
Once a reading drops below the threshold cease the aggregation and
immediately emit the result
Since the sensors have a known history of spotty network connections, if
more than 10 seconds elapse without either a closing reading or an
additonal high reading go ahead and emit the aggregation

By using this approach, the dashboard appliction will display the information
your team will need to take action. You start looking at the Kafka Streams
DSL API, and you’re naturally drawn to the windowed aggregations. From
reading it seems what you’ll like to use is an aggregation with
SessionWindow as it’s driven by behavior instead of time. But you really need
the fine grained control of what to include in the aggregation as well as when
to emit the results. So you turn your attention to the Processor API and decide
to write your own "DataDrivenWinowing" behavior.

You’ve built Kafka Streams Processor API applications before, so you dive
right in and start on the Processor implementation you’ll need to complete



the task. Here’s the start of the ProcessorSupplier you’ve come up with:

Listing 9.7. ProcessorSupplier

public class DataDrivenAggregate implements

        ProcessorSupplier<String, Sensor, String, SensorAggregation> {

    private final StoreBuilder<?> storeBuilder; #1

    private final Predicate<Sensor> shouldAggregate; #2

    private final Predicate<Sensor> stopAggregation; #3

    public DataDrivenAggregate(final StoreBuilder<?> storeBuilder,

                           final Predicate<Sensor> shouldAggregate,

                           final Predicate<Sensor> stopAggregation) {

      this.storeBuilder = storeBuilder;

      this.shouldAggregate = shouldAggregate;

      this.stopAggregation = stopAggregation;

    }

So when creating the ProcessorSupplier you provide two Predicate
instances used to determine when to start an aggregation or include a record
in the current aggregation. The second one determines when to reject a record
from the aggregation which in turn shuts the aggregation off. Let’s now take
a look at the Processor implementation that the supplier returns.

Listing 9.8. Processor Implementation

private class DataDrivenAggregateProcessor extends

        ContextualProcessor<String, Sensor, String, SensorAggregation> {

    KeyValueStore<String, SensorAggregation> store;

    long lastObservedStreamTime = Long.MIN_VALUE;

  @Override

  public void init(ProcessorContext<String, SensorAggregation> context) {

        super.init(context);

        store = context().getStateStore(storeBuilder.name()); #1

        context().schedule(Duration.ofSeconds(10),            #2

                           PunctuationType.WALL_CLOCK_TIME,

                           this::cleanOutDanglingAggregations);

    }

Initializing the Processor is straight forward and it looks very similar to the
other processor implementations you’ve built before. The interesting logic



occurs however in the process method:

Listing 9.9. DataDrivenAggregateProcessor process method implementation

@Override

public void process(Record<String, Sensor> sensorRecord) {

    lastObservedStreamTime =

         Math.max(lastObservedStreamTime, sensorRecord.timestamp()); 

    SensorAggregation sensorAgg = store.get(sensorRecord.key());

    SensorAggregation.Builder builder;

    boolean shouldForward = false;

    if (shouldAggregate.test(sensorRecord.value())) {  #2

        if (sensorAgg == null) {

            builder = SensorAggregation.newBuilder();

            builder.setStartTime(sensorRecord.timestamp());

            builder.setSensorId(sensorRecord.value().getId());

        } else {

            builder = sensorAgg.toBuilder();

        }

        builder.setEndTime(sensorRecord.timestamp());

        builder.addReadings(sensorRecord.value().getReading());

        builder.setAverageTemp(builder.getReadingsList()

                                      .stream()

                                      .mapToDouble(num -> num)

                                      .average()

                                      .getAsDouble());

        sensorAgg = builder.build();

        shouldForward  =

              sensorAgg.getReadingsList().size() % emitCounter == 0; 

        store.put(sensorRecord.key(), sensorAgg);

    } else if (stopAggregation.test(sensorRecord.value()) #4

                          && sensorAgg != null) {

        store.delete(sensorRecord.key());

        shouldForward = true;

    }

    if (shouldForward) {    #5

        context().forward(new Record<>(sensorRecord.key(),

                                       sensorAgg,

                                       lastObservedStreamTime));

    }

}

Since the logic for the aggegation is straight forward I’m only going to



discuss the main points of this method indicated by the annotations. At the
first annotation we’ll update the lastObservedStreamTime variable. Stream
time only moves forward, so we don’t blindly accept the timestamp from the
incoming record, instead we’ll reuse the existing stream time value should an
out of order record arrive. You’ll see the importance of the
lastObservedStreamTime variable in the next section when we cover the
method punctuation executes.

At the second annotation gets to the crux of this processor; does the record
belong in an aggregation? If yes then you’ll either create a new aggregation
object or add the record to an existing one. Additionally, a few lines of code
down you’ll see the third annotation where the shouldForward variable is set
to true or false indicating if there’s enough readings to require a forwarding
of the aggregation before it closes. Since we can’t count on always having a
small number of readings, we’ll want to make sure to emit intermediate
aggregation results. The final line in this section stores the aggregation in the
state store.

If the first if block doesn’t evaluate to true we’ll end up at annotation four.
Here if the record matches the stopAggregation condition, meaning the
temperature reading dropped below the threshold. If there is an existing
aggregate it’s deleted from the state store and the shouldForward gets set to
true. If the incoming record doesn’t meet the threshold and there’s no current
aggregation the record is simply ignored.

Finally at annotation five if the shouldForward variable evalutes to true the
processor forwards the aggregation to any downstream processors.

So at this point we’ve covered the main requirements of this processor,
creating a "windowed" (setting a start and ending timestamp) aggregation that
is determined by some aspects of the record data, in this case the reading of a
temperature sensor. We have one last requirement to take care of, that is if we
don’t receive any updates for a given period of time, we’ll want to clear the
aggregation out and forward the results. This final requirement is handled by
the method executed by the scheduled punctuation. Let’s take a look at the
punctuation code now:

Listing 9.10. Punctuation Code



void cleanOutDanglingAggregations(final long timestamp) {

 List<KeyValue<String, SensorAggregation>> toRemove = new ArrayList<>();

  try (KeyValueIterator<String, SensorAggregation> storeIterator

                                                     = store.all()) { 

        while (storeIterator.hasNext()) {

         KeyValue<String, SensorAggregation> entry = storeIterator.next();

          if (entry.value.getEndTime() <

                                 (lastObservedStreamTime - 10_000)) { 

                toRemove.add(entry);

            }

        }

    }

    toRemove.forEach(entry -> {  #3

        store.delete(entry.key);

        context().forward(new Record<>(entry.key,

                                       entry.value,

                                       lastObservedStreamTime));

    });

}

The scheduled punctuation will execute every ten seconds (wallclock time)
and examine all the records in the state store. If a timestamp is more than ten
seconds behind the current stream time (meaning it hasn’t had an update in
that amount of time) it’s added to a list. After iterating over the records in the
store, the resulting list iterates over its contents removing the record from the
store an forwarding the aggregation.

This concludes our coverage of using the Processor API for providing
functionality that’s not available to you in the DSL. While it’s a made up
example, the main point is that when you want finer grained control over
emitting records from an aggregation and custom calculations, the Processor
API is the key to acheiving that objective.

9.5 Integrating the Processor API and the Kafka
Streams API

So far, our coverage of the Kafka Streams and the Processor APIs has been
separate, but that’s not to say that you can’t combine approaches. Why would
you want to mix the two approaches?

Let’s say you’ve used both the KStream and Processor APIs for a while.



You’ve come to prefer the KStream approach, but you want to include some
of your previously defined processors in a KStream application, because they
provide some of the lower-level control you need.

The Kafka Streams API offers three methods that allow you to plug in
functionality built using the Processor API: KStream.process,
KStream.transform, and KStream.transformValues. You already have
some experience with this approach because you worked with the
ValueTransformer in section 4.2.2.

The KStream.process method creates a terminal node, whereas the
KStream.transform (or KStream.transformValues) method returns a new
KStream instance allowing you to continue adding processors to that node.
Note also that the transform methods are stateful, so you also provide a state
store name when using them. Because KStream.process results in a terminal
node, you’ll usually want to use either KStream.transform or
KStream.transformValues.

From there, you can replace your Processor with a Transformer instance.
The main difference between the two interfaces is that the Processor’s main
action method is process(), which has a void return, whereas the
Transformer uses transform() and expects a return type of R. Both offer the
same punctuation semantics.

In most cases, replacing a Processor is a matter of taking the logic from the
Processor.process method and placing it in the Transformer.transform
method. You’ll need to account for returning a value, but returning null and
forwarding results with ProcessorContext.forward is an option.

  Tip

The transformer returns a value: in this case, it returns a null, which is filtered
out, and you use the ProcessorContext.forward method to send multiple
values downstream. If you wanted to return multiple values instead, you’d
return a List<KeyValue<K,V>> and then attach a flatMap or flatMapValues
to send individual records downstream. An example of this can be found in
src/main/java/bbejeck/chapter_6/StockPerformanceStreamsAndProcessorMultipleValuesApplication.java.



To complete the replacement of a Processor instance, you’d plug in the
Transformer (or ValueTransformer) instance using the KStream.transform
or KStream.transformValues method.

A great example of combining the KStream and Processor APIs can be found
in
src/main/java/bbejeck/chapter_6/StockPerformanceStreamsAndProcessorApplication
.java. I didn’t present that example here because the logic is, for the most
part, identical to the StockPerformanceApplication example from section
6.3.1. You can look it up if you’re interested. Additionally, you’ll find a
Processor API version of the original ZMart application in
src/main/java/bbejeck/chapter_6/ZMartProcessorApp.java.

9.6 Summary

The Processor API gives you more flexibility at the cost of more code.
Although the Processor API is more verbose than the Kafka Streams
API, it’s still easy to use, and the Processor API is what the Kafka
Streams API, itself, uses under the covers.
When faced with a decision about which API to use, consider using the
Kafka Streams API and integrating lower-level methods (process(),
transform(), transformValues()) when needed.

At this point in the book, we’ve covered how you can build applications with
Kafka Streams. Our next step is to look at how you can optimally configure
these applications, monitor them for maximum performance, and spot
potential issues.



10 Further up the Platform: ksqlDB
This chapter covers

An introduction to ksqlDB
More about streaming queries
Building streaming applications with SQL statements
Creating materialized views over streams
Using ksqlDB advanced features

At this point in the book we’ve learned about several components of the
Kafka event streaming platform - Kafka Connect for integrating external
systems and Kafka Streams that you can use for building an event streaming
application. These two components together form the bedrock of building
event streaming applications. In this chapter you’re going to learn about
ksqlDB which allows you to leverage those components by writing SQL to
build an event streaming application. ksqlDB is a "Streaming database
purpose built for streaming applications", it allows you to build powerful
streaming applications with a few SQL statements.

So why would you use ksqlDB? For starters it vastly simplifies the
application development process. With ksqlDB you’re not working with code
or configuration files. You write your SQL queries and execute them which
launches a continually running application where you can get instant
notification of events.

Imagine you’re working with business analysts at Fintech company, Big
Short Equity. They’ve seen the applications you’ve built using Kafka
Streams. They want the ability to build some near-real-time financial analysis
applications, but their primary skill set is not writing Java code. While you
can try to support the analysts needs and build the Kafka Streams apps
required, it would be far more efficient if the analysts could build them on
their own. The analysts are experts on using SQL, as most of their work at
this point involves writing queries on relational databases. So you have the
idea of introducing ksqlDB to them, after all it provides scalable, distributed



stream processing including aggregations, joins, and windowing. But unlike
running a SQL query against a typical relational database, where the query
will return results and stop, the results of a ksqlDB query are continuous.

In a nutshell, you’ll want to use ksqlDB because you can quickly build a
powerful event-streaming application in the same time it takes you write a
SQL query!

So what you’re going to learn in this chapter is how to apply what you’ve
learned so far about building event-streaming applications, but by using the
familiar syntax of a SQL query. ksqlDB uses Kafka Streams under the
covers, so all the concepts from the previous chapters apply here as well.
Additionally, the ksqlDB server provides direct integration with Kafka
Connect, so you can build entire end-to-end solution with out any code. We’ll
start out the basic concepts of a stream and a table and how ksqlDB handles
different data formats, including JSON, Avro, and Protobuf. Finally, we’ll
explore more advanced options involving aggregations, joins and windowed
operations.

10.7 Understanding what ksqlDB is

Earlier in the book, we discussed the concepts of an event-stream and an
update-stream. To refresh your memory an event-stream is infinite sequence
of independent events. Records in an event stream with the same key aren’t
related to each other, each one stands alone as an event. But an update stream
is little different. An update stream is infinite as well, but events with the
same key as a previous event are considered an update to that event. ksqlDB
has the same concept; you can query from a Stream or a Table, additionally
you can perform a point-in-time query against a materialized view or a
stream.

So let’s get started with your first ksqlDB query. To make the comparison to
a Kafka Streams application easier, we’ll repurpose the Yelling
Application.

  Note



You can deploy ksqlDB in one of three ways, in standalone mode, as cluster
on premises, or in Confluent Cloud. In this book you’ll work with ksqlDB in
standalone mode via Docker. Later in the chapter we’ll cover the ksqlDB
architecture in more detail.

First we need to create a Stream from a Kafka topic:

Listing 10.1. Creating a Stream in ksqlDB

ksql> CREATE STREAM input_stream (phrase VARCHAR) WITH

  (kafka_topic='src-topic', partitions=1, value_format='KAFKA');

So the first step is to create a ksqlDB STREAM. In this case you’ve created a
STREAM named input_stream and it’s based on the topic src-topic.

  Note

For all the ksqlDB examples, I’m going to assume your using one of the
docker compose files (arm64_ksqldb-docker-compose.yml, x86_ksqldb-
docker-compose.yml depending on the architecture of your laptop) included
in the source code. Once you’ve run docker compose -f <file name> up
command you’ll want to open a new terminal window and run docker exec
-it ksqldb-cli ksql http://ksqldb-server:8088. This command will
start a ksqlDB CLI session. Consult the README for chapter 10 in the
source code for full instructions. Also, these commands should work if you
choose to use ksqlDB on Confluent Cloud.

After you execute the CREATE STREAM… command you should see something
like this on the ksqlDB CLI screen

Listing 10.2. Result of the CREATE STREAM statement

Message

----------------

 Stream created

----------------

  Tip



You can confirm the STREAM objects you’ve created by running the
command show streams; from the CLI

So now that you have a STREAM, the next step is to populate the underlying
topic with some data you can start yelling! You could use a KafkaProducer
to produce records to the topic, but for now let’s stick with SQL commands.
Run a few insert like the following:

Listing 10.3. Insert statements for loading data into a stream

INSERT INTO input_stream (phrase) VALUES (

  'Chuck Norris finished World of Warcraft');

INSERT INTO input_stream (phrase) VALUES (

  'Chuck Norris first program was kill -9');

INSERT INTO input_stream (phrase) VALUES (

  'generate bricks-and-clicks content');

INSERT INTO input_stream (phrase) VALUES (

  'brand best-of-breed intermediaries');

.....

Using INSERT INTO.. statements are a great way to get going quickly with
ksqlDB. But in practice, after you’ve completed some quick prototyping,
you’ll want to get data into the topic using a more efficient manner like a
KafkaProducer or the results of another ksqlDB query.

The next step is to create a continuous or push query. Before we do that, let’s
go over some background information. In ksqlDB since the queries are based
on data coming into a Kafka topic, the run continuously, as an event stream
never really stops. So once you start a query it will continue evaluating the
incoming data until you explicitly stop it. These are called "push" queries
because the results are "pushed" to the client that issued the query. We’ll
cover the different clients you have to issue a ksqlDB query later in the
chapter. You’ll also learn about another query type called a "pull" query that
yields "point-in-time" results from a materialized store. If these terms seem
unfamiliar to you, don’t worry, we’ll make them clear later in chapter when
we cover them.

With our background information complete, let’s get back to writing the
query that will be your streaming application:



Listing 10.4. A continuous query that becomes your streaming application

CREATE STREAM yelling AS  #1

  SELECT UCASE(phrase) AS SHOUT #2

  FROM input_stream

  EMIT CHANGES; #3

Congratulation, with just a simple query statement you have a streaming
application! Notice that at annotation two you used a ksqlDB built-in
function to perform the upper-case of the phrase, there are several built-in
functions available. We’ll cover functions as we go along in the chapter.

Before we go on let’s review what you just did and compare it to your first
Kafka Streams application, the Yelling App. By comparing the two you’ll get
good sense if what ksqlDB is and what it can do for you when developing a
streaming application. Let’s start by looking at the Kafka Streams version:

Listing 10.5. Kafka Streams version of the Yelling App

Serde<String> stringSerde = Serdes.String();

StreamsBuilder builder = new StreamsBuilder();

builder.stream("src-topic",

                Consumed.with(stringSerde, stringSerde))

        .peek(sysout)

        .mapValues(value -> value.toUpperCase())

        .peek(sysout)

        .to("out-topic",

                Produced.with(stringSerde, stringSerde));

As far as Kafka Streams applications go this one is very simple. In the
chapter I introduced Kafka Streams, one of the benefits of using the Kafka
Streams DSL is that it’s mostly declarative vs. imperative. This means you’re
specifying mostly what you *want* to do (declarative) instead of specifying
*how* to do it. What’s the significance of this difference? As you can
probably guess the declarative approach is simpler to express and understand.

For example, let’s say you’ve invited a friend over for dinner and they ask if
you need something and you reply to pick up a bottle of red wine. That would
be a declarative statement, you left the decision of where to pick it up and
what time to your friend. Now contrast that with having to give directions to



a beer and wine store and where to find it in the store and what to do if your
favorite brand isn’t available etc, that level of instruction is imperative. I
could go on, but you get the point I’m trying to make here.

Using Kafka Streams vs raw or plain KafkaConsumer and KafkaProducer
instances greatly simplifies your application development effort, but ksqlDB
takes that to another level. Here’s what you used to create the same stream
application with ksqlDB:

Listing 10.6. ksqlDB version of the Yelling App

CREATE STREAM yelling AS SELECT UCASE(phrase) AS SHOUT FROM input_stream

    EMIT CHANGES;

Just one line of text, a SQL statement, is all it took for creating the Yelling
application in ksqlDB.

While the Kafka Streams version is still very easy to build, you still need to
provide Serde instances, create the StreamBuilder instance, compile and run
the code etc. This ease of developing a streaming application only gets larger
as you start to develop more complex applications. Another benefit, and
arguably the most impactful, to using ksqlDB is that since it uses SQL, it
opens the door to non-developers for creating streaming applications.

Note that under the covers, a ksqlDB SQL statement compiles down to a
Kafka Streams application. So while it’s using SQL it’s very helpful to have
an understanding of Kafka Streams when using ksqlDB.

Does this mean that ksqlDB will solve all your problems and you don’t need
Kafka Streams any more? Certainly not, no one tool can do it all and Kafka
Streams will always have a place for building powerful event streaming
applications. ksqlDB is simply another, although powerful, tool for you to
use at your disposal.

Next let’s dive into a more complex and realistic example and at the same
time learn about using the Table abstraction, which is important to learn
about as it tracks the latest record for a given key.



10.1 Learning more about streaming queries

Earlier in the book you learned about the KStream and KTable concepts in
Kafka Streams. The KStream is an event stream, where records (key-value
pairs) with the same key are independent events, but with the KTable, an
update stream, events with the same key are *updates* to a previous event
with the same key. In ksqlDB the STREAM and TABLE concept follow the same
rules. Let’s dig a little deeper with a more realistic example than the yelling
application. Along the way we’ll dig into more details of working with
ksqlDB.

Let’s say you’ve started a fitness website that encourages its members to get
as many "steps" per day. But members can do other activities that count
towards steps, not just running or walking. After some influences endorsed
your application, your traffic has grown significantly and you’d like to
encourage the growth by offering the ability to display the "step" leaders in
near-real time and have it update on a regular basis.

You have a mobile application that updates user results to a backend server
you have running in the cloud. The server in takes the information from the
mobile applications and produces user activity updates to a Kafka topic with
the name user_activity. This topic is the starting point enabling you
publish updates to the website and your first step is to create a STREAM based
on it -

Listing 10.7. Creating the stream

CREATE STREAM user_activity (first_name VARCHAR, #1

                             last_name VARCHAR,

                             activity VARCHAR,

                             event_time VARCHAR,

                             steps INT

     ) WITH (kafka_topic='user_activity',

            partitions=4,

            value_format='JSON',

            timestamp = 'event_time',    #2

            timestamp_format = 'yyyy-MM-dd HH:mm:ss' #3

     );



You have a SQL statement here creating the user_activity stream. The
underlying value in the topic is in JSON and you’ve specified the structure of
the JSON as the column names for the stream. The WITH statement contains
properties ksqlDB uses for handling the stream and this time we’ve added a
couple of new items; properties named timestamp and timestamp_format.

You’re using these properties to instruct ksqlDB to use a field embedded in
the record itself as timestamp for the record. If you recall from an earlier
chapter, a KafkaProducer embeds a timestamp into a record when it produces
to Kafka. The producer added timestamp becomes the event-time for the
record. Usually the producer timestamp is close enough to serve as the
official time of an event. But in some cases you may not want to use the
timestamp set by the producer, but one set on the value of the record itself.

Why would you want to use a value embedded timestamp instead? While
there could be many reasons, the chief reason would be when the timestamp
on the record represents a more accurate reflection of when the event took
place. In our case here, the timestamp on the record is when the user made
the entry on your fitness application. The timestamp from the producer
reflects when it received the record from your application server. While in
practice these two should be very close, when it comes to awarding points or
prizes it’s more important to track when the user made the entry on their
mobile device.

So to enable using the embedded timestamp you provide the timestamp
property in the WITH clause and it specifies the column to use for the event
time vs the one Kafka provides. Since you have the event_time field as a
string, you need to tell ksqlDB the format of it which you’ve done with the
timestamp_format property.

In practice it’s very common to a long primitive for the timestamp in event
objects since it represents the number of milliseconds in the Unix epoch time
(time in milliseconds since January 1, 1970). In those cases where you have a
long for the timestamp you would use a type of BIGINT for the timestamp
column and in the WITH clause you’d only need to specify the column name
since ksqlDB can work with the field directly. So in that case you’d update
the query to create the stream like this:



Listing 10.8. Creating the stream with event time as a long

CREATE STREAM user_activity (first_name VARCHAR,

                             last_name VARCHAR,

                             activity VARCHAR,

                             event_time BIGINT, #1

                             steps INT

     ) WITH (kafka_topic='user_activity',

            partitions=4,

            value_format='JSON',

            timestamp = 'event_time' #2

     );

You’re using a type of BIGINT as that is the numeric type for an 8 byte
number in ksqlDB, the backing type in Java is a long. But that raises the
question what if you want to use the producer provided timestamp? ksqlDB
has a system-column for each record called ROWTIME and it’s populated with
the timestamp from the underlying Kafka record. The term system-column
means it’s provided automatically by ksqlDB, you don’t need to do anything
for it. We’ll see an example of using ROWTIME later in this chapter. Before we
move on with our example of the fitness steps application there’s some
additional information about the WITH clause we should cover.

For review here’s the WITH clause from the user_activity stream:

Listing 10.9. WITH clause from user_activity stream

WITH (kafka_topic = 'user_activity', #1

      partitions = 4,     #2

      value_format = 'JSON',  #3

      timestamp = 'event_time',    #4

      timestamp_format = 'yyyy-MM-dd HH:mm:ss' #5

     );

  Note

We’ve already discussed the timestamp related properties in the previous
section, so I won’t go over them again.

You’ll notice at annotation one we specify the topic name. This topic will be



the source of data for the stream of user activity records. Remember, ksqlDB
continuously evaluates the query over the incoming records of a topic, and
not a relational database table. The partitions entry at annotation number
two specifies the number of partitions of the topic. Take note that the
kafka_topic property is always required.

Since ksqlDB uses Kafka Streams under the covers, why are you telling it the
number of partitions of the input topic? After all you simply provide the
name of the topic and Kafka Streams takes care of everything needed to
properly consume from the topic. If the underlying topic doesn’t exist when
you create the stream, ksqlDB will attempt to create it.

But if the topic does exist, ksqlDB will not overwrite it. An important point
to note is that when you provide the partitions property for the STREAM and
the topic exists, the number of partitions you specify must match the actual
number of partitions, otherwise you’ll get an error. If the topic exists, you can
safely omit the partitions property.

When doing quick development or prototyping in a local environment,
having ksqlDB create the topics can be a time saver. But in a production
setting it’s best to always create the topics you need ahead of time to avoid
any confusion or miscommunication about the structure of your applications.

The last part of setting stream properties we’ll cover here is the
value_format setting. As you might have guessed, this tells ksqlDB the
format of the value in the key-value pair. There is a setting for the key as well
- key_format. The acceptable entries for either the key_format and
value_format properties include:

'JSON'
'JSON_SR'
'AVRO'
'PROTOBUF'
'PROTOBUF_NOSR'
'NONE'
'KAFKA'
'DELIMITED'



While I won’t go into a full discussion here on the different types, (I’ll refer
you to the ksqlDB documentation instead -
https://docs.ksqldb.io/en/latest/reference/serialization/#serialization-formats)
it will be worthwhile to point out a few important points. The JSON_SR, AVRO,
and PROTOBUF formats use Schema Registry. To use Schema Registry with
ksqlDB, you must provide the HTTP endpoint (as you did with either the
Kafka clients or Kafka Streams) via the ksql.schema.registry.url
property.

We’ll cover configuration options for ksqlDB in a later section. If you’re
using Schema Registry, ksqlDB will automatically register a schema as
needed. But this raises an important point, if you have an existing schema for
a given value or key, you can provide the schema id for the key or value in
the WITH statement when setting the properties for your stream. For example,
let’s say you used Avro for the values in the fitness step application. In that
case you would the stream in this way:

Listing 10.10. Specifying the schema id when constructing the stream

CREATE STREAM user_activity

WITH ( kafka_topic = 'user_activity',

       value_format = AVRO, #1

       value_schema_id = 1 #2

     )

At annotation one you’re specifying that the value uses AVRO for the
serialization, but you also provide the schema id at annotation two, so it can
retrieve the precise version of the schema from Schema Registry. This ability
to use the exact version of a schema is important when ksqlDB either
consumes from or writes to a topic that other applications work with as it’s
essential that all clients use the same schema otherwise you’re application is
likely to experience errors due to data formatting errors. If you don’t provide
the schema id, ksqlDB will retrieve the latest version of the schema. ksqlDB
will assume the subject name for the schema is <topic-name-key> or <topic-
name-value>. We covered Schema Registry in chapter 3, so you can refer
back to it if you need to refresh your understanding of Schema Registry
concepts.

You’ll also notice that you didn’t define any columns for the stream and



that’s because when using serialization format supported by Schema
Registry, ksqlDB will infer the column names and field types from the
schema. In our current example, we specified the column names and types
because we’re using plain JSON for the data format there’s no inferencing
available. We’ll cover using ksqlDB with Schema Registry in more detail in a
later section, but for now let’s get back to building the fitness step
application.

For review, here’s the initial query you have:

Listing 10.11. Initial query for building the fitness step application

CREATE STREAM user_activity (first_name VARCHAR, 

                             last_name VARCHAR,

                             activity VARCHAR,

                             event_time VARCHAR,

                             steps INT

     ) WITH (kafka_topic='user_activity',

            partitions=4,

            value_format='JSON',

            timestamp = 'event_time',    

            timestamp_format = 'yyyy-MM-dd HH:mm:ss' 

     );

With this stream in place you’re now primed to start building the often
requested new feature, a leader board. You decide you’re going to add up the
steps for a given activity and present the results in sorted order from highest
to lowest. To create the first leader board stat you are going to need to
perform an aggregation, in this case just a simple sum of the steps column.

Listing 10.12. Adding a sum aggregation for calculating leaders in a category

CREATE TABLE activity_leaders AS    #1

  SELECT

     last_name,

     SUM(steps)                     #2

FROM user_activity

GROUP BY last_name #3

EMIT CHANGES;

When you use an aggregation in ksqlDB, the result of the query is a TABLE, so



we’ll need to explicitly create one with our query. Also note that just like
when you query a relational database you must include the columns in the
SELECT statement in the GROUP BY clause. So what you’ve created here a table
or materialized view of an aggregation, a SUM in this case and it will continue
to provide results since it’s selecting from the underlying stream
user_activity - so whenever new results end up on the user_activity
stream, your table here updates with new results. Additionally, the ksqlDB
creates a changelog topic as well that it uses to make sure the records in the
aggregation are backed up should the ksqlDB server running the table query
experience any issues.

You should also take note that under the covers, creating this table results in
creating a new topic in Kafka, named activity_leaders by default since
that’s the name of the table. If you want to use a different name for the
underlying topic supporting the table, you can provide the topic name in a
WITH statement and we’ll see just how to do that next.

Initially, this query works for you and the customers you have in your demo
preview respond well to the leader dashboard. But in the solicited feedback
there are several comments for you to update the dashboard with more
details. First of all, the results combine the steps score across all activities and
are only displayed with the users' last name making it difficult to
disambiguate the differences between members of your app with the same
last name.

So you decide to put the release on hold and pursue the required changes
based on the user provided feedback. Since you’re in a development
environment for the preview you’d like to clean up the table query. Since you
plan on complete revamp of the activity_leaders table it would be a good
idea to remove the backing topic as well. So your next step to clean things up
is to run this command:

Listing 10.13. Command to remove the table and the underlying topic

DROP TABLE activity_leaders DELETE TOPIC;

This command will delete the table from ksqlDB and the backing topic. This
command marks the topic for deletion, the actual removal of the topic is



asynchronous and occurs eventually when the broker cleans up resources.

NOTE: The DELETE TOPIC clause at the end is optional. If you want to keep
the records contained in the topic then you can consider leaving off the delete
part off the command. Also can add IF EXISTS to your command so it won’t
error out should a table you’re trying to delete doesn’t exist. So the command
would look like DROP TABLE IF EXISTS activity_leaders DELETE TOPIC

Now that you’ve cleaned up the existing table you go about redefining you
table query and you decide that adding the first name and the activity type
should satisfy the user comments - you’ll get to distinguish between users
and see the leaders for each activity type. Since you’re proficient in SQL it
doesn’t take you long to come up with the query:

Listing 10.14. Updating the sum aggregation for leaders per activity and full name

CREATE TABLE activity_leaders AS

  SELECT

     first_name,

     last_name,

     activity,

     SUM(steps)

FROM user_activity

GROUP BY first_name, last_name, activity

EMIT CHANGES;

Your updated query is essentially the same but now you’re selecting
additional columns, first_name and activity. Since you’ve added two
columns in the select portion of the SQL, you’ll need to add those columns as
well in the GROUP BY clause. This is required because with an aggregation
we’ll need to group the records by the selected fields to form unique results,
the grouping acts as a "key" for the aggregation. You execute the new table
statement in the ksqlDB CLI and you see an unexpected error:

Listing 10.15. Error creating a Group By with multiple columns

Key format does not support schema.

format: KAFKA

schema: Persistence{columns=[`FIRST_NAME` STRING KEY, `LAST_NAME`

  STRING KEY, `ACTIVITY` STRING KEY], features=[]}

reason: The 'KAFKA' format only supports a single field. Got:



  [`FIRST_NAME` STRING KEY, `LAST_NAME` STRING KEY, `ACTIVITY` STRING KEY]

This detailed error message explains things pretty well, but let’s add a little
more information. When ksqlDB attempts to create the underlying topic for
the table, the primary key type will default to KAFKA meaning it must be a
scalar or schema-less type supported by Kafka - a string or integer for
example. But here you’ve provided three columns that will make up a
composite key. This is required because you’re grouping by these three
columns to ensure the results are unique per row, so three fields won’t work
with a schemaless key.

Fortunately, there is a simple solution to getting your updated query to work.
You’ll just need to specify the key format for the new table to one that
supports a schema, and this case we’ll use JSON. To do this, we’ll make a
slight change to query and add a WITH statement like so:

Listing 10.16. Update the CREATE TABLE to specify a key format that supports a schema

CREATE TABLE activity_leaders WITH (KEY_FORMAT = 'JSON') AS

  SELECT

     first_name,

     last_name,

     activity,

     SUM(steps)

FROM user_activity

GROUP BY first_name, last_name, activity

EMIT CHANGES;

So by adding WITH (KEY_FORMAT = 'JSON') your new table will now use
JSON and create a composite key containing the first_name, last_name,
and activity columns. But you’re not quite done yet, as this change will
make the query successful in performing the aggregation, but the group-by
columns are in the key and won’t show up in the final results.

So you’ll need to instruct ksqlDB that you want those columns in value
portion of the results (remember Kafka works in key-value pairs). Again this
is easily achieved by using AS_VALUE function which instructs ksqlDB to
copy a row’s key into its value as well. You’ll need to keep the original
columns in the select statement and add an AS_VALUE function for each key
you want copied into the value:



Listing 10.17. Specifying key format and copying keys to value as well

CREATE TABLE activity_leaders WITH (KEY_FORMAT = 'JSON') AS

  SELECT

     first_name as first_name_key, #1

     last_name as last_name_key,  #1

     activity as activity_key,   #1

     AS_VALUE(first_name) as first_name, #2

     AS_VALUE(last_name) as last_name, #2

     AS_VALUE(activity) as activity,  #2

     SUM(steps) as total_steps

FROM user_activity

GROUP BY first_name, last_name, activity

EMIT CHANGES;

So now you have a working aggregate query with multiple GROUP BY items
which is essentially a composite key for each row. Note that this is not
something you need to do with all aggregations in ksqlDB. But having
multiple columns you are grouping by is common enough that it’s worth us
taking the time to explain how to handle the situation.

What you’ve seen so far is just scratching the surface with what you can do
with ksqlDB, more complex queries are possible and there are several built-in
functions to learn about. But before we continue down the path of exploring
the capabilities of ksqlDB, let’s take a quick pause to discuss some of the
conceptual types of queries that are possible.

10.2 Persistent vs. Push vs. Pull queries

So far we’ve built a streaming application that show updates as the
user_activity stream continues receiving user input. Once a client executes
the query, the results are continually pushed to that client unless the query is
specifically terminated. But there could be a situation where you want to
issue a single query to retrieve specific result at that point in time vs. a
constant stream of updates. Additionally, you may need continuous query
that doesn’t serve a particular client, but can be used by any client issuing a
query, something more *permanent*. We’ll discuss how to do implement
both of these approaches next.

ksqlDB has three categories of query types. A push or continuous query



where the stream or table constantly executes against the incoming records to
the underlying topic returning the results to the original client issuing the
query. The activity_leaders table you created in the previous section is an
example of a persistent query.

Push queries are an excellent choice for an asynchronous work flow, that is
where you issue a command or request, but you don’t expect an answer
immediately, it executes in the background and the answer will come later. A
concrete example of an asynchronous work flow is sending an email, you
write your text and then send it, knowing that you’ll get a response at some
point, but you don’t need an immediate answer.

For more of a synchronous, request-response workflow, ksqlDB offers a pull
query. An example of synchronous type of workflow is you have contractors
at your house and they need to get your permission to take out a section of
the wall, all work stops until they receive an answer. You can issue a pull
query against a stream or a table, and there are some restrictions which we’ll
get into in a moment.

So the question is which one to use? To answer that question let’s compare
all three query types (persistent, push, and pull) against each other.

Figure 10.1. Persistent queries run on the server and persist results to a topic



A persistent query runs on the server it stores the results of the query in a
Kafka topic - so the results persist for duration of the topic’s configured
retention time. Also, once you have a persistent query running, you can easy
share outcome of the query by virtue of the fact that any Kafka consumer
client can read the records from the topic. You can think of a persistent query
as the workhorse or backbone, it carries the full load of performing the



analysis of your streaming application. With a persistent query you can use
the full range of ksqlDB SQL syntax. Persistent queries take the form of
CREATE TABLE|STREAM AS SELECT...

Figure 10.2. Push queries don’t store results but return them to the client that submitted the
query



A push query on the other hand does not persist its results to a topic. A push



query returns it’s results to the client issuing the query. But the results are
continually pushed to the client - you can think of a push query as a
subscription for changes to the persistent query. For example a push query
against the activity_leaders could look like this:

Listing 10.18. Push Query example on Activity Leaders table

SELECT

    last_name, activity, total_steps

FROM activity_leaders

EMIT CHANGES;

With this query you’re going to receive updates for each user as they update
their activity. But these changes aren’t stored anywhere, the results of this
query return to the original client executing the query, whether it’s from the
ksqlDB CLI, the REST API or the Java client that’s available. We’ll cover
the client options available for ksqlDB later in this chapter. This query
returns all updates to the table, but you could further refine the results further
with a WHERE clause:

Listing 10.19. Push Query with WHERE clause

SELECT,

  last_name, activity, total_steps

FROM activity_leaders

WHERE total_steps > 1000

EMIT CHANGES;

Now you’ll only receive updates where the total number of steps is greater
than one-thousand. The conditions you put in the WHERE clause can refer to
any column the stream or table defines including the pseudo columns
ROWTIME, ROWPARTITION, and ROWOFFSET defined by ksqlDB. These columns
are injected or attached to each row for an incoming record into a Kafka topic
backing a stream or table. Let’s take a moment to define each of these:

ROWTIME - Is the timestamp associated with the Kafka record which
either the producer or the broker sets, depending on your configuration.
ROWPARTITION - The rowpartition value is records' partition it
belonged to from the backing topic
ROWOFFSET - Each record in a Kafka topic has an offset which



represents its logical position in the topic.

When would you use any of these pseudo columns in a query? Sometimes
you may find that it’s helpful to filter results by external factors about a
record - for example you may only want to view events that occurred within a
given time-frame. Even if the record doesn’t define a timestamp as one of its
columns, you can still filter results by the values contained in the ROWTIME for
each one.

You could specify more conditions to refine the results, I won’t enumerate
them all here, but I’m sure you’re getting the picture to what you do. At this
point you should be able to see the relationship between persistent and push
queries - the persistent query carries the full-load and allows you to issue a
push query to receive a subset of the information you’re interested in. Since
the push query doesn’t persist its results, it makes sense to use push queries
as an alerting source until a given state is reached.

Then once the given state is reached, say where you observe a given user
reaching ten-thousand steps, you can terminate your query. There’s a way
you can place a hard cap on the number of results, using the LIMIT clause.
For example let’s say you are testing out a query from the ksqlDB CLI and
you only want to see of the query works properly then exit you can change
the push query above to this:

Listing 10.20. Push Query with a LIMIT

SELECT

  last_name, activity, total_steps

FROM activity_leaders

WHERE total_steps > 1000

EMIT CHANGES

LIMIT 10;

Now the query will terminate once it emits 10 result records. I should not at
this point that push queries can use the full range of SQL commands ksqlDB
provides. There are two main differences between persistent and push
queries:

1. Push queries don’t persist results, they are emitted to the console or back



to the client executing the query
2. Push queries aren’t shared. With a persistent query, it evaluates against

the incoming records once and stores the results in a Kafka topic. But
with push queries, if separate clients issue the same queries ksqlDB
evaluates each one independently even if they provide the same output.

Figure 10.3. Pull queries return point in time results once to get updates you need to re-submit
the query



Now let’s move on to the final query type, the pull query. Where the



persistent and push queries provided constant evaluation of the incoming
records, a pull query evaluates its statement once and terminates afterwards.
Like the push query however, the pull query does not persist its results in a
topic, the outcome of the query is returned to the client. One can think of a
pull query as reaching out an pulling down a result at a particular point in
time. The role of a pull query is best used in a situation where you need an
immediate answer, as you would in a request - response workflow.

Pull queries only support a subset of the ksqlDB SQL statements. You can
use a pull query with any stream and tables created with CREATE TABLE as
SELECT, but currently not tables created directly against a backing topic.
Additionally, pull queries don’t support the use of JOIN, GROUP BY,
PARTITION BY, and WINDOW clauses.

Out of the box, there are limitations with what you can do in a WHERE clause
as well. The restrictions in the WHERE clause are that you must use a key
column and the comparison needs to be against a literal value. For example
here’s a pull query against the activity_leaders table you created earlier:

Listing 10.21. Example of pull query WHERE clause with a key lookup

SELECT last_name, activity, total_steps

FROM activity_leaders

WHERE key_1 = 'Smith'

So now you can execute a query against the activity_leaders table and get
results for where the last name is equal to "Smith" and the query terminates.
To get any additional updates for this query, you’d have to execute it again.

  Note

There is a configuration you can set allowing for more liberal use of the
WHERE clause. If you set ksql.query.pull.table.scan.enabled to true in
either a CLI session or a ksqlDB server and it allows for several additional
enhancements like using non-key columns or comparing columns to other
columns. See the ksqlDB documentation for more information on table scans
- https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/select-



pull-query/#where-clause-guidelines

We’ve covered a lot of ground on the different query types available so let’s
wrap things up with a table to compare each situation where persistent, push
and pull queries are most effective.

Type Syntax Best Use Running
Mode

Results Stored
in Topic

Persistent

CREATE
[STREAM
TABLE] AS
SELECT..
EMIT
CHANGES

Asynchronous
response,
heavy work
on server

Continual
updates Yes

Push

SELECT
[items]
FROM
[STREAM
TABLE]…
EMIT
CHANGES

Asynchronous
response,
more refined
queries

Continual
updates No

Pull

SELECT
[items]
FROM
[STREAM
Materialized
TABLE]…
WHERE

Evaluate
query and
terminate,
point in time
query

No updates
must re-issue
for additional
results

No

To summarize our table here persistent queries take the form of CREATE
STREAM|TABLE AS SELECT.. EMIT CHANGES and the query results are



persisted in a Kafka topic. Since different clients can share the results in a
topic, persistent queries are best suited for doing heavy or more complex
queries. Changes are continually emitted as new records arrive in the stream
or table.

A push query starts with SELECT [items] FROM.. EMIT CHANGES but the
results are not persisted in a topic, they are returned continually to the client.
A push query can use the full range of SQL available in ksqlDB. Since the
results are not persisted, the same query issued from different clients is
always evaluated. The push query is optimal for subscribing to changes in a
stream or table as in an event driven architecture, but usually the query is
much simpler.

Finally the pull query retrieves a distinct result and terminates, there are no
updates as new records arrive. A pull query takes the form of SELECT
[items] FROM.. The results are not persisted as well and are returned to the
issuing client. The pull query is best used for obtaining a single result in a
request-response format. A pull query has limitations on the SQL statements
it can use most notably in the WHERE clause.

The general pattern then is to have persistent queries running on the ksqlDB
server and use a combination of push and pull queries to extract a subset of
information from them in your applications.

This wraps up our coverage on query types, but before we go on let’s
formalize the ways you can create a stream or a table with the different query
types.

10.3 Creating Streams and Tables

So far we’ve established that you can create streams and tables in ksqlDB,
but we’ve done it without categorizing the different ways that you can do so,
but we’ll take care of that in this section. This will also be a good time to talk
about integrating with Schema Registry because when you define a stream or
table where the backing topic has a schema, defining the columns in the
create statement is optional, ksqlDB will infer the names and types based on
the schema. We’ll discuss creating streams and tables without schemas first,



then well move on to integration with Schema Registry later in this section.

The first category of a stream or table is you can create could be considered a
"base" stream or table. You create these base streams or tables directly
against a backing Kafka topic. We’ve seen creating a base stream earlier with
the user_activity stream, but we’ll repeat it here:

Listing 10.22. Creating the user_activity stream

CREATE STREAM user_activity (first_name VARCHAR,

                             last_name VARCHAR,

                             activity VARCHAR,

                             event_time VARCHAR,

                             steps INT

     ) WITH (kafka_topic='user_activity',

            partitions=4,

            value_format='JSON',

            timestamp = 'event_time',

            timestamp_format = 'yyyy-MM-dd HH:mm:ss'

     );

This statement creates a stream with the backing topic of user_activity. If
you recall a Kafka topic stores key-value pair records, but as defined here,
this stream contains only values, the keys for each record are null. Defining a
key on a stream is optional in ksqlDB and in this case there are no keys for
the user_activity topic. But what if a topic does have keys, how would you
change the CREATE STREAM statement here? Let’s say that the user_activity
topic does have populated keys - an integer that represents the user-id you
would update the create statement like this:

Listing 10.23. Creating the user_activity stream

CREATE STREAM user_activity ( user_id INT KEY, #1

                              first_name VARCHAR,

                              last_name VARCHAR,

                              activity VARCHAR,

                              event_time VARCHAR,

                              steps INT

     ) WITH (kafka_topic='user_activity',

            partitions4,



            key_format='KAFKA' #2

            value_format='JSON',

            timestamp='event_time',

            timestamp_format='yyyy-MM-dd HH:mm:ss'

     );

So for adding a key the only change you needed to make was adding a
column declaring its type and adding the KEY reserved word telling ksqlDB
this is the key of the key-value pair. You also need to tell ksqlDB how the
key is formatted, which you’ve done at annotation two, specifying a format
of KAFKA indicating it’s one of the basic types supported by Kafka - String,
Long, Integer for example. Just like we’ve seen with Kafka clients and
Kafka Streams, having a key will drive the partitioning for the incoming
records and without a key records are pretty much evenly distributed across
partitions.

You can also create a table directly with a backing topic. Let’s take our
user_activity stream and create it as a table named user_activity_table
instead:

Listing 10.24. Creating the user_activity_table table

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY, #1

                                 first_name VARCHAR,

                                 last_name VARCHAR,

                                 activity VARCHAR,

                                 event_time VARCHAR,

                                 steps INT

     ) WITH (kafka_topic='user_activity',

            partitions4,

            key_format='KAFKA' #2

            value_format='JSON',

            timestamp='event_time',

            timestamp_format='yyyy-MM-dd HH:mm:ss'

     );

Creating a table is very similar to creating a stream, but with one significant
difference. The KEY column on the stream is optional, but with a table it’s
required. In annotation two, you’re specifying the format if the key which
follows the exact same rules as the key format specification of the stream
above. Key format values can also be AVRO, PROTOBUF, and JSON_SR (for



JSON Schema), but for our purposes, as we’ve done throughout the book, the
examples you’ll use will only use keys of type KAFKA.

But there are also several differences between a stream and a table with the
semantics of keys and values. In a stream, we’ve established a valid record
can have a null key, but a table will drop any incoming record with a null
key. Another difference, we’ve covered before, is that in a stream records
with the same key don’t have an impact on each other, the remain
independent of each other.

But in a table, just like in a relational database table, you can only have one
primary key, so an incoming record with the same key as a previous record
will be an update replacing it. There’s also a difference in semantics with null
values between a stream and a table. A null value in a stream holds no special
meaning, but a null value in a table is considered a tombstone. The
significance of a tombstone record marks that row for deletion from the table
(which under the covers means it’s deleted from the backing topic). Let’s
summarize these differences in a table for quick reference:

Stream Table Key optional

Key required, otherwise
the record is dropped

Keys don’t have to be
unique, records with the
same key aren’t related

Keys must unique,
records with the same
key are updates

Null values have no
impact or meaning

Null values are
tombstones, marking the
row for deletion from
the table.

Type KEY

As side note it’s important to understand that a row with null value does not
get immediately deleted, rather it’s marked for deletion. Under the covers a
table uses a backing topic that is a compacted topic and only when the log
cleaner runs will the record get removed. The log cleaner runs at regular
intervals as configured.



When you create either a stream or table with a CREATE statement directly
against a Kafka topic, you don’t directly query them. These streams and
tables are how you bring a Kafka topic into ksqlDB. It’s the subsequent
streams and tables you create by selecting from these base streams and tables
that provide results either returned to a client in the case of push or pull
queries (remember push queries run indefinitely until terminated and pull
queries evaluate once and terminate) or persisting their results to a topic.

So to summarize you have three basic types of streams and tables:

1. The "base" streams or tables that expose a topic to ksqlDB for further
queries

2. Persistent queries that publish results to a Kafka topic
3. Push and Pull queries that you can run against either the base ones or

persistent queries

Now that we’ve wrapped up our coverage on query types, let’s move on to
the formats of keys and values and Schema Registry integration.

10.4 Schema Registry Integration

Schema Registry integrates fairly seamless with ksqlDB and it offers a
sizable advantage when defining a stream or a table where there is a schema.
Since the schema contains the field names and the types, you can omit the
column definitions when you create a stream or table. For example let’s take
another look at the user_activity_table definition and assume the value
used Protobuf:

Listing 10.25. User Activity Table with Schema Registry - Protobuf schema

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY #1

     ) WITH (kafka_topic='user_activity_proto',

            partitions4,

            key_format='KAFKA' #2

            value_format='PROTOBUF', #3

            timestamp='event_time',

            timestamp_format='yyyy-MM-dd HH:mm:ss'

     );



We still need to provide the primary key definition since it’s a basic KAFKA
type, but for the columns we omit providing the definitions and ksqlDB infers
the names and types from the schema. A situation like this where you use a
KAFKA type and a type supported by Schema Registry is known as partial
schema reference. If the key were also of type Protobuf, then the table
definition would be simplified further to this:

Listing 10.26. User Activity Table with Schema Registry - Protobuf schema for key and value

CREATE TABLE user_activity_table

     WITH (kafka_topic='user_activity_proto',

           partitions4,

           key_format='PROTOBUF' #1

           value_format='PROTOBUF', #2

           timestamp='event_time',

           timestamp_format='yyyy-MM-dd HH:mm:ss'

     );

I’m only showing the updated table definition for the user_activity_table
because the user_activity stream would have the identical changes for
creating the stream with schema enabled values and/or keys. There is an
exception to this rule of omitting column definitions with schemas and that
happens when you only want to use subset of the columns. For example let’s
revisit the user_activity_table but now let’s say you only want to use
three columns - last_name, activity, and steps your table definition would
look like this:

Listing 10.27. User Activity Table with Schema Registry - Protobuf schema subset of columns

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY, #1

                                 last_name VARCHAR, #2

                                 activity VARCHAR,

                                 steps INT

     ) WITH (kafka_topic='user_activity_proto',

            partitions4,

            key_format='KAFKA',

            value_format='PROTOBUF'

     );

So here even though the value is in Protobuf format, we need to declare the



names and types of columns since we’re only selecting a subset of them.
Although the inferencing done by ksqlDB reduces the amount of writing you
need to do for a stream or table definition, it also reduces the clarity as now
you’ll have to either issues a DESCRIBE statement or view the physical schema
to understand the column names and types. This could be considered a minor
point, but there’s something to be said from reading the sql statements and
gaining a full understanding of the underlying data types.

We have two final points to consider in our Schema Registry section, when
ksqlDB infers data types and writes a schema, and the conversion of
datatypes.

When you create a persistent query, for recall that means using syntax of
CREATE STREAM AS SELECT… , the persistent query will inherit the key and
value format of the base stream or table. To refresh your memory persistent
queries end up storing their results in a topic with the name of the stream or
table.

Figure 10.4. When creating a new query from a persistent one it will inherit the data format by
default



So this means if the value is in Protobuf format ksqlDB will register a new



schema with Schema Registry using a subject of the stream or table followed
by value. For example let’s revisit the user_activity stream, but this time
we’ll say the value is uses Protobuf :

Listing 10.28. The user_activity stream in Protobuf

CREATE STREAM user_activity (first_name VARCHAR,

                             last_name VARCHAR,

                             activity VARCHAR,

                             event_time VARCHAR,

                             steps INT

     ) WITH (kafka_topic='user_activity',

            partitions=4,

            value_format='PROTOBUF',

            timestamp = 'event_time',

            timestamp_format = 'yyyy-MM-dd HH:mm:ss'

     );

Even though we don’t have to have the column definitions there, we’ll have
them there as it should help with the clarity of the example. Now let’s say
you want a persistent query to count the number of activities by the user’s
last name you’d end up with a persistent query looking like this:

Listing 10.29. Persistent query inheriting value format

CREATE TABLE activity_count AS

  SELECT

    last_name,

    COUNT(activity) AS ACTIVITY_COUNT

  FROM user_activity

  GROUP BY last_name

 EMIT CHANGES;

From creating this table, ksqlDB registers a schema named activity_count-
value and it’s format is Protobuf since the source stream is in that format.
But let’s now say that the materialized topic from the query needs to be in
JSON format, as some of the downstream clients aren’t able to support another
data format right now.

Figure 10.5. ksqlDB can change the datatype on the fly when creating a new persistent query



That’s not going to be a problem for ksqlDB, as you can seamlessly change
the data format from the underlying persistent query by overriding the value
data format like this:

Listing 10.30. Overriding the value format of a source stream

CREATE TABLE activity_count WITH (value_format = 'JSON') AS



  SELECT

    last_name,

    COUNT(activity) AS ACTIVITY_COUNT

  FROM user_activity

  GROUP BY last_name

 EMIT CHANGES;

Now the resulting topic activity_count, will contain records with values in
JSON. You can use this ability to transform the record format in ksqlDB with
source streams/tables and persistent queries. Since push and pull queries
output their results directly back to the client in a deserialized format, there’s
no option or need to convert the resulting format.

As we conclude this chapter I’d like to give a final example of converting the
serialization format. We’ll cover a practical example of why you’d want to
covert the format in the next chapter. Let’s say you have a stream of IoT data
in Avro format, and you need to have all records in the stream converted to
Protobuf to support more downstream clients. Here’s the stream you have in
AVRO:

Listing 10.31. Stream defined in AVRO

CREATE STREAM IoT_TEMP_AVRO (device_id INT KEY, temp DOUBLE)

 WITH (kafka_topic = "iot_temp", value_format 'AVRO');

You want to create an identical stream, but in Protobuf format. To do this you
can simply create a new stream by selecting everything from from the
IoT_TEMP_AVRO stream like this:

Listing 10.32. Create a new stream in different serialization format

CREATE STREAM IoT_TEMP_PROTOBUF WITH (value_format 'PROTOBUF') AS

    SELECT * FROM IoT_TEMP_AVRO;

So now you have created an identical stream in a different serialization
format with single line of SQL! Now that we’ve covered the core of ksqlDB,
let’s move on to more advanced features including joins and aggregations.

10.5 ksqlDB advanced features



So far in this chapter you’ve learned how to use ksqlDB to create streams and
tables, but usually you’ll need to use more advanced features to solve
complex issues. Consider our scenario from a previous chapter where we
have two streams of different purchases, one for coffee bought at the internal
store cafe and the other representing all other purchases made in the store. To
refresh your memory, we wanted to join purchases made within thirty
minutes of each other to create a promotion for the customer. Let’s get started
by first creating a stream for each category:

Listing 10.33. Creating ksqlDB streams for each purchase category

CREATE STREAM coffee_purchase_stream (custId VARCHAR KEY,

                                      drink VARCHAR,

                                      drinkSize VARCHAR,

                                      price DOUBLE,

                                      purchaseDate BIGINT)

     WITH (kafka_topic = 'coffee-purchase',

           partitions = 1,

           value_format = 'PROTOBUF',

           timestamp = 'purchaseDate'

     );

CREATE STREAM store_purchase_stream(custId VARCHAR KEY,

                                    credit_card VARCHAR,

                                    purchaseDate BIGINT,

                                    storeId VARCHAR,

                                    total DOUBLE)

     WITH (kafka_topic = 'store-purchase',

           partitions = 1,

           value_format = 'PROTOBUF',

           timestamp = 'purchaseDate'

     );

Now that you have your two streams, the next step is to setup the join itself,
but before we do that let’s take a moment to discuss requirements. Just like in
Kafka Streams, in order to perform a join both streams need be co-
partitioned meaning that the underlying topics must have the same number of
partitions and they are keyed the same (keys are the same field and type). In
our case here, both topics have four partitions and the key for both streams is
the customer id, so they are all set for joining. Now let’s take a look the SQL
for the join:



Listing 10.34. Creating a stream-stream join for potential customer rewards

CREATE STREAM customer-rewards-stream AS

  SELECT c.custId AS customerId, #1

       s.total as amount, #2

       CASE       #3

         WHEN s.total < 25.00 THEN 15

         WHEN s.total < 50.00 THEN 50

         ELSE 75

        END AS reward_points

  FROM coffee-purchase-stream c

    INNER JOIN store-purchase-stream s

    WITHIN 30 MINUTES GRACE PERIOD 2 MINUTES  #4

    ON c.custId = s.custId #5

So what you’ve done here is to select one field from each stream, the
customer id and the total amount of the store purchase. To determine the
amount of reward points you using a CASE statement which ends up assigning
different point levels depending on the total amount the customer spent in the
store. CASE statements are elegant way of evaluating different conditions
based on the value of a field that’s part of the query.

  Note

For stream-stream joins in ksqlDB other join types of LEFT OUTER, RIGHT
OUTER and FULL OUTER they follow the same semantics you learned
about with KStream joins.

But you’re not limited to joining streams in ksqlDB, you can also perform
stream-table joins. When using a stream-table join in ksqlDB, only new
records on the stream side will trigger a result (just like Kafka Streams), so
typically you’ll use a stream-table join when you want to enrich the stream
side by performing a lookup in the table.

For example consider the results of the stream-stream join you just
implemented. One of the columns you projected into the join was the
customer id, but you’d like to have more complete information about the
customer. So to accomplish adding additional information would be to join
the customer-rewards-stream with a fact table, members, which contains full



details of all the shoppers who participate in rewards program.

Let’s say you have a sink connector that is exporting all the records from a
"members" table into a Kafka topic named "rewards-members", so the first
thing you’ll need to do is create a table in ksqlDB:

Listing 10.35. Create a lookup table in ksqlDB from an existing topic

CREATE TABLE rewards_members (member_id VARCHAR PRIMARY KEY,

                              first_name VARCHAR,

                              last_name VARCHAR,

                              address VARCHAR,

                              year_joined INT)

     WITH (kafka_topic = 'rewards-members',

           partitions = 1,

           value_format = 'PROTOBUF'

    );

Now that you have your table created you can now go about setting up a join
with the customer-rewards-stream. But in this case not all customers are
members of the rewards program, so you’re going to set up a LEFT OUTER
join which will enable you to filter records later on that don’t contain
customer information:

Listing 10.36. Stream - table left outer join for adding customer information when present

CREATE STREAM enriched-rewards-stream  #1

   WITH (kafka_topic='customer-rewards-stream', #2

          value_format='PROTOBUF') AS

   SELECT crs.custID as customer_id,  #3

          rm.first_name + ' ' + rm.last_name as name,

          rm.year_joined as member_since

          crs.amount as total_purchase,

          crs.reward_points as points

    FROM customer-rewards-stream crs

    LEFT OUTER JOIN rewards-members rm

              on crs.customerId = rm.member_id #4

Here you’ve created an enriched stream by joining the rewards stream with a
customer information table and you’ve specified this as a LEFT OUTER JOIN
meaning if the customer-rewards-stream does not find a correspond record in
the rewards-members table, you’ll still get a join result but any of the fields



representing the table will null.

This has been an example of a stream-table join and ksqlDB also supports
table-table joins. What’s unique about table-table joins in ksqlDB is that in
addition to the expected primary key joins, it also supports foreign key joins.
You’ll need a foreign key join when the primary key of one table matches a
non-primary-key column on another table. For example, let’s take the
activity-count table you created earlier in the chapter and join it against the
rewards-members table from the stream-table join example. I’ll repeat the
definition of both tables here:

Listing 10.37. Two tables for performing a foreign key join

CREATE TABLE activity_count WITH (value_format = 'JSON') AS

  SELECT

    last_name,

    COUNT(activity) AS ACTIVITY_COUNT

  FROM user_activity

  GROUP BY last_name

 EMIT CHANGES;

CREATE TABLE rewards_members (member_id VARCHAR PRIMARY KEY,

                              first_name VARCHAR,

                              last_name VARCHAR,

                              address VARCHAR,

                              year_joined INT)

     WITH (kafka_topic = 'rewards_members',

           partitions = 3,

           value_format = 'PROTOBUF'

);

Let’s say that your fitness app was purchased by the same retail store we built
the stream-stream and stream-table joins for and they’d like to award
members of the rewards club points for store use based on their participation
in the fitness app. Since you already have the table reward-members you
should be able to join it against the activity-counts table.

Now the activity-counts table has a primary-key of last_name and the
rewards-members primary key is the member’s id, but it does have a
last_name column so we can join on the rewards-members.last_name as a



foreign key. Since we’re joining on a column that’s part of the value, we
won’t have the restrictions of co-partitioning. This is because we are joining
against a value, and there’s no way to deterministically know which partition
it belongs to since we put records on a partition by the key.

  Tip

In you need to change a key for a stream or table in ksqlDB you’d use SELECT
FROM and a partitionBy=<column> in the with clause to get the correct key.

So let’s create the join between these two tables:

Listing 10.38. Foreign Key join between activity_count and rewards-members

CREATE TABLE rewards-members-fitness-count AS

SELECT * FROM

activity_count ac JOIN rewards-members rm

   ON ac.last_name = rewards-members.last_name

EMIT CHANGES;

So without much effort at all you’ve joined the activity_count table with
members information by using a non-primary key on another table.

Before we conclude this chapter on ksqlDB we should discuss one of the
more powerful features of ksqlDB. We’ve discussed the different data
formats ksqlDB supports, Avro, Protobuf and JSON. So far all the objects
we’ve worked with have been flat, meaning there is one top level object and
all the fields we want to access are attributes of that object. But what would
you do when the data has nested structures? Consider the following JSON
schema:

Listing 10.39. JSON with nested structures

"event_id": 1234,

  "school_event": {

       "type": "registration",

       "date": "2023-02-18",

       "student": {

             "first_name": "Rocky",

             "last_name": "Squirrel",



             "id": 1234567,

             "email": "rsquirl@gmail.com"

       },

       "class": {

             "name": "Geology-100",

             "room": "23RF",

             "professor": {

                  "first_name" : "Bullwinkle",

                  "last_name"  : "Moose"

                  "other_classes" : ["Geology-200", "Rocks-400", "Earth Minerals-304"]

                }

       }

  }

So this is a deeply nested JSON structure. As you can see from the schema
here, that information is available, but how to model and access it?
Fortunately ksqlDB makes accessing nested data easy.

To access nested data ksqlDB uses a data type of a STRUCT, which maps
string (VARCHAR) keys to arbitrary values. You will use STRUCTs to
describe the schema of the nested data when defining a stream. For example,
using the JSON schema we just looked at, you’d define a stream for it this
way:

Listing 10.40. Using the STRUCT datatype to represent nested data

CREATE STREAM school_event_stream (

  event_id INT,

  event STRUCT<type VARCHAR,  #1

               date VARCHAR,

               student STRUCT<first_name VARCHAR, #2

                              last_name VARCHAR,

                              id BIGINT,

                              email VARCHAR

                              >,

                class STRUCT<name VARCHAR,

                             room VARCHAR,

                             professor STRUCT<first_name VARCHAR,

                                              last_name VARCHAR,

                                              other_classes ARRAY<VARCHAR>

                                             >

                            >



                >

)

WITH (kafka_topic='school_events',

      partitions=1,

     value_format='JSON'

)

As can see from this code listing each time you define a nested object in the
same manner you would for any column. First you provide the name
followed by the type which is STRUCT< followed by the names and types of
the fields on the object, when you reach the last field for the object you’d
close it with a > character. You repeat this process each time you encounter
an object in the schema.

To query the nested fields you provide the name of the outermost key and use
a → to dereference from the object, again repeating as necessary. To see this in
action, lets say you want to write a query that would make course suggestions
for each given student based on the other courses taught by a professor of a
class the student is currently attending. You’d write such a query in this way:

Listing 10.41. Query on nested data for course recommendations

SELECT

       event->student->id as student_id,

       event->student->email as student_email,

       event->class->professor->other_classes as suggested

FROM

   school_event_stream

EMIT CHANGES

So to access the nested data you use the name→ pattern until getting to fields
you’d like to retrieve in your query. You can follow the same pattern to
access individual elements of an array or map. For example, let’s say you
only want to offer one suggestion, so just access the first entry of
other_classes, you’d update the query to this:

Listing 10.42. Query nested data and access a specific array entry

SELECT

       event->student->id as student_id,



       event->student->email as student_email,

       event->class->professor->other_classes[1] as suggested

FROM

   school_event_stream

EMIT CHANGES

Now your query will only offer one suggested course to take

  Tip

To access individual elements from a nested Map you’d use
name→map_name['key'] and if the map entry was another STRUCT you could
drill down using the same dereferencing syntax.

The book’s source code contains SQL files, the required docker compose
files, and instructions for running examples shown in this chapter, found in
streams/src/main/java/bbejeck/chapter_10.

10.6 Summary

1. ksqlDB is an event streaming database where you can build event
streaming applications using the familiar syntax of SQL. The queries
you write will continually evaluate events coming into a Kafka topic and
may persist the results to a topic or return them directly to a client
application.

2. You can create a STREAM or a TABLE in ksqlDB and they have the same
semantics as the corresponding streams and tables in Kafka Streams. A
STREAM is an unbounded stream of independent events and the TABLE is
an update stream where event key-value pairs with the same key are an
update to a previous one with the same key.

3. There different query types in ksqlDB - source queries where you create
a STREAM or TABLE with a backing Kafka topic, persistent queries that
select some or all of the columns from a source query, they persist their
results to a Kafka topic. Persistent query results can be shared with
multiple clients. A push query is one that selects a subset of columns
from a persistent query but the results are streamed directly back to the



client. Push queries will run indefinitely until the client terminates the
connections. Pull query results aren’t shared; ksqlDB will execute
identical queries coming from different clients. A pull query executes
once and terminates. A pull query has some limitations on the SQL
statements it supports.

4. ksqlDB seamlessly supports Schema Registry serialization formats.
Streams and tables inherit the key and value format of their backing
topics or source streams and tables. You can easily change the format of
stream or table by using a WITH clause and providing a different key
and/or value format. ksqlDB will automatically register a schema when
creating stream or table that is based off a persistent query. When
defining a stream or table and you’re using Avro, Protobuf or JSON
Schema format for your events, you don’t have to declare the column
names and types in the definition.

5. ksqlDB offers a rich library aggregation functions like COUNT, SUM, and
AVE out of the box. For the most part it probably has most math
functions, but if there’s not something provided you can use a user-
defined-function (UDF) to create your own.

6. You can create new streams by using stream-stream joins or enrich a
stream with a stream-table join. Stream-Stream and Stream-Table joins
require that both sides of the join are co-partitioned (same key type and
number of partitions). You can also perform Table-Table joins with
primary keys, but you can also perform a foreign key joins for cases
where you want to join on a field that’s in the value of one of the tables.

7. You can query arbitrarily nested data using the STRUCT datatype to
model the schema for a stream or table and then use the → operator to
deference objects and drill down to the desired field.



11 Spring Kafka
This chapter covers

Learning about Spring and why you’ll use it with Kafka
Using Spring Kafka for building Kafka and Kafka Streams application
Learning about Kafka Streams Interactive Queries
Building an Ineractive Queries app with Spring Boot

In this chapter you’re going to learn about using an other open source library,
Spring, to build Kafka and Kafka Streams applications. But before we get
into that, let’s give some quick background on what Spring is and why you’ll
use it. Spring has it origins as IoC (Inversion of Control) container originally
developed by Rod Johnson. The inversion of control principal essentially
means that the main program or appliction does not controll where its
dependencies are cominging from. If you are familiar with Spring, you can
skip this section and go directly to the next one where we dive into a Kafka
producer and consumer appliction with Spring Kafka.

A non-IoC application, say a payment processing system, would directly
instantiate all of the collaboratig components in the application, essentially
it’s in control of the other components used. This control includes being
aware of the concrete types of the components vs the interface. But with IoC
the main application only has references to the interface types of the
collaborators and instead of directly instantiatign them, they are injected into
the application. This makes for much more flexible and testible applications,
as you can change the implementation as needed and testing is far easier,
since you control what’s injected, you can supply mock instances into the
applicaiton.

Dependency injection is one way of achieving IoC, there’s an external
mechanism that injects dependencies, either via constructors, getter methods
or directly at the field level. That’s exacty what Spring provides, a
mechanism for wiring up applications where each component only uses
interfaces. Spring has grown over the years to be a large thriving project,



providing much more than just a basic IoC container. I’m not going to cover
the details of Spring, just what you need to get started using it with Kafka and
Kafka Streams. For more complete coverage of Spring I would suggest
starting with the following titles from Manning Books:

1. Spring in Action, Craig Walls
2. Spring Boot in Practice, Somnath Musib
3. Spring Security in Action, Laurențiu Spilcă
4. Java Persistence with Spring Data and Hibernate, Cătălin Tudose

As for why you’d want to use Spring, let’s look at a concrete exmple of a
payment system mentioned before. Without a doubt you payment application
will require a network connection for receiving and sending payment
information. Additionally, you’ll not want to use raw network sockets for this
network communication. Instead you’ll want wrap up in a software
component so that your payment processor doesn’t need to know the details
of connecting to the network and communicating with it.

So a basic skeleton of your payment processor class could look like this:

Listing 11.1. Payment Processor Class

public class PaymentProcessor implements Processor {

  private NetworkClient networkClient;

  public PaymentProcessor(NetworkClient networkClient) {

     this.networkClient = networkClient;

  }

 payment = networkClient.receive();

 // do some work

 networkClient.send(processedPayment);

}

From looking at the PaymentProcessor class you see that it has a dependency
on the NetworkClient to complete its job. But notice that the code knows
nothing of the NetworkClient other than the exposed methods on the



interface. This is a very benefitial situation, as you don’t want the
PaymentProcessor to have any knowledge beyond the contract specified by
the interface. Why is this important? As time goes on with your project you’ll
make changes and it might include changing the implementation of the
NetworkClient, but from the way you’ve written the code here, that won’t
matter, the PaymentProcessor only need something that implements the
expected interface. Otherwise you’d have find all uses of the specific
implementation and update the useage.

You reap an additional benefit when it comes to testing you want the test to
run fast and you only want to validate the logic of the PaymentProcessor, so
you can inject a "mock" NetworkClient that implements the interface but
doesn’t actually connect to the internet, it will simply provide the canned
information you’ve provided. We’ll go into more detail about mocks and
different approaches for testing in another chapter.

So now, hopfully you can see the benefit of using and dependency injection
approach to composing software applications, but the question remains how
do I actually inject the different required classes? Enter the Spring container.
Spring provides different annotations that you use to "annotate" the different
relationship different classes have with each other let’s take a look at an
example:

Listing 11.2. Annotations on classes specifying the relationship between them

@Component #1

public class PaymentProcessor implements Processor {

  private NetworkClient networkClient;

  @Autowired #2

  public PaymentProcessor(NetworkClient networkClient) {

     this.networkClient = networkClient;

  }

 ...

}

...

@Component#3

public class SecureNetworkClient implements NetworkClient {



  public SecureNetworkClient(...) {

    ...

  }

 ....

}

By providing these annotations when you start up the application, Spring will
scan all the classes and wire-up the classes based on the annotations on them.
So Spring takes care of putting all the pieces together for you. This concludes
our brief introduction to the Spring framework. In the next section we’ll dive
into using Spring to create Kafka enabled applications.

  Note

Spring Kafka is a very comprehensive and it would difficult to cover
everything in one chapter. We’re going to cover the basics to get you started
using Spring to build Kakfa enabled applications. For more details see the
Spring books from Manning mentioned above and also consult Spring’s
excellent documentation at https://docs.spring.io/spring-
kafka/docs/current/reference/html/

11.1 Building Kafka Enabled Applications

When building Kafka applications with Spring, you have two choices; you
can build a more traditional application with Java configuration or you can
use Spring Boot. Spring Boot provides the ability to quickly build standalone
Spring enabled applications. We’ll show some examples of using both
approaches for building a basic producer consumer applications.

The difference between the two is that Spring Boot is opininated on how to
structure things and therefore can provide a higher level of abstraction, taking
care of many of the details required to use Kafka with Spring. I’m covering
the two approaches for completeness, but for the most part I’d reccomend
using Spring Boot as it makes creating an application easier and it also
provides great default options like a built in web-server which we’ll cover
how this is useful a little later in the chapter.



Let’s say you are working for a startup that’s specializing in on-line loan
applications for mortgages, car and business loans. The company, called
Dime, is taking an approach of offering substantially lower interest rates and
plans to become profitable by having a large volume of loans to make up for
the reduced interest income. The plan is to provide quick turnaround on loan
applications and operate in a very agile manner, automating the loan
application process as much as possible. To achieve this, loan applications
completed on the company website are forwarded to a Kafka topic, and there
is a sophisticated underwriting application that will process the loans. The
underwriting application sends the results to potentiall three topics, one each
for accepted applications, rejected applications, and a qa department that will
audit loans selected at random to ensure the rigor of the loan process.

We’re going to start with the Java configuration approach first.

11.1.1 Java config Kafka application

You’re going to build your application taking the following steps:

1. Create a class that contains configuration information. This class will
contain properties used by different components, but since it’s
centralized it will allow for quick changes with different settings.

2. Define the behavior you want for you consumer and producer
components

3. Build a class that pulls all to components together and runs the
functionality you’ve defined

Let’s create the configuration component first. The configuration class
contains all of the information needed to connect to the Kafka cluster plus the
topic names and other information that may change. By putting all of this
information in a single class it makes it simple and less error prone since all
configuration items are in one place.

When you start your Spring application, Spring scans the classpath and
finding the classes with the @Component annotations and injects them where
referended with an @Autowired annotation. Let’s look at another illustration
depicting this process:



Figure 11.1. Classes with @Component annotations get injected into classes with a reference to it
with @Autowired

What’s important to know here is that by default, any class with the
@Component annotation is a singleton, Spring injects the same instance into
all classes that have a reference to it. This is an important point to remember
if you have any mutable state in your object as you’ll need to ensure serial
access to the state with synchronization.



With that background information completed let’s go ahead jump into the
application code. First let’s take a look at how the project is structured.

Listing 11.3. Structure of the Spring Java configuration application

bbejeck

  spring

    application

      |_ CompletedLoanApplicationProcessor #1

      |_ NewLoanApplicationProcessor    #2

    java

      |_ LoanApplicationAppJavaConfiguration #3

      |_ LoanApplicationProcessingApplication #4

  Note

Some details have been left out of the directory structure for clarity

These classes are contained in two different packages, but with Spring
annotations, we’ll have no troubles getting them all together for one complete
application. Let’s review the code from a Spring perspective, that is how
things are going to be wired up. The first place we’ll look is the
LoanApplicationAppJavaConfiguration as this drives most of the
configuration process, starting with the class declaration.

Listing 11.4. Class declaration for the LoanApplicationAppJavaConfiguration

@Configuration #1

@EnableKafka #2

@PropertySource("classpath:application-java-config.properties") #3

public class LoanApplicationAppJavaConfiguration { 

...

}

Let’s quickly describe each annoation and it’s role in the Spring application.
A class marked with @Configuration means it provides one or more methods
annotated @Bean which means the Spring container will handle those at
runtime to create objects to satisfy dependency needs. If this is not entirely
clear to you, we’ll fill in the details in the next section.



The @EnableKafka annotation makes it possible to use message-driven-POJO
(a POJO stands for Plain Old Java Object) with a @KafkaListener annotation
defined as a component in a Spring container. A message driven POJO
meands you can define a method in a class to recieve Kafka messages, but the
class or method itself is not necessarily tied to Kafka. It accomplishes this by
taking an expected ConcurrentKafkaListenerContainerFactory defined in
the configuration class and creating a KafkaListenerContainer for each
@KafkaListener found in the container.

Finally the configuration class uses the properties file defined in the
@PropertySource source annotation to fulfill property placeholders. A
propery placeholder any place in your code where you don’t want a hard-
coded value - meaning you want set its value at runtime from a properties file
for the corresponding variable.

The advantage of using properties in the manner is it makes your applications
flexible. For example setting the endpoint for your producer to send messages
to a Kafka broker can change, by using a properties file to define that
endpoint means if you need to change it, all you do is update the property in
the file and it’s seamlessly transferred to the code, you don’t need to update
the application itself. Using different environments (development, staging,
production) are an excellent example of for using propeties, to deploy your
application in a production environment shouldn’t require a code change, just
different properties for connections to various services.

If you found this section a little abstract, we’re going to make it clear in the
next section where we’ll show how this annotations at the class declaration
work.

Listing 11.5. A deeper look into the configuration class

@Configuration

@EnableKafka

@PropertySource("classpath:application-java-config.properties")

public class LoanApplicationAppJavaConfiguration {

  @Value("${bootstrap.servers}") #1

  private String bootstrapServers;



  @Value("${loan.app.input.topic}") #2

  private String loanAppInputTopic;

  // Other properties omitted for clarity

 @Bean

 public ConcurrentKafkaListenerContainerFactory<String, LoanApplication> kafkaListenerContainerFactory() { 

    ConcurrentKafkaListenerContainerFactory<String, LoanApplication> kafkaListenerContainerFactory =

                new ConcurrentKafkaListenerContainerFactory<>();

    kafkaListenerContainerFactory.setConsumerFactory(consumerFactory());

    return kafkaListenerContainerFactory;

 }

@Bean

public ConsumerFactory<String, LoanApplication> consumerFactory() { 

  return new DefaultKafkaConsumerFactory<>(consumerConfigs(),

                new StringDeserializer(),

                new JsonDeserializer<>(LoanApplication.class)); #5

 }

// Other beans left out for clarity

}

Here we’re taking a bit of a deeper look into the configuration class. At the
top you can see how we inject property values into the class, by placing a
@Value annotation directly above the field we want to set the value into. By
using this approach, we make our application code more flexible, because we
are free to change the property values and our code doesn’t need to change at
all since none of the values are hard-coded into it.

  Note

You can also use this approach for injecting propery values into any class that
is part of the Spring container.

There are several other properties we define here, but I’m not showing them
here as it’s repetitive but you can consult the source code at
bbejeck.spring.java.LoanApplicationAppJavaConfiguration.java class in the
spring-kafka gradle module.



Now let’s turn our attention to the methods marked with the @Bean
annotations. The container uses these methods to construct the infrastructure
code needed to perform the Kafka consumer activity. You can also create
methods here that supply objects for dependency injection used by other
components in the Spring container.

When using a @Bean annotation the name of the bean in the Spring context is
the method name. This is important to know if you needed to access a Spring
bean once you start the application. To provide a different name for the bean
you’d supply it with the annotation. For example if we wanted to provide a
custom name for the container listener factory we would do something like
this @Bean("loanApplicationContainerFactory"). We’ll see examples of
when you’ll want to provide the name for a Spring bean and how to access
them later in the chapter.

So at annotation three you see the kafkaListenerContainerFactory method
returning a ConcurrentKafkaListenerContainerFactory instance. The
Spring container uses the factory to create a KafkaListener instance for each
method that you’ve annotated with @KafkaListener. The KafkaListener is
an abstraction over a KafkaConsumer. But by using annotations in this
manner, Spring allows to you enable any class as a "message driven bean"
capable of recieving Kafka records. We’ll get into more details of what a
message driven bean is and using listener container factories later in the
chapter.

The next bean at annotation four is a KafkaConsumerFactory which the
Spring container will use to create instances of a consumer, or more precisely
the listener factory will use it to create consumer instances. If you look into
the details of the method, you’ll see the constructor parameters passed to the
consumer factory. The first parameter is Map containing the properties (the
method not shown here) for constructing the consumer, a key deserializer and
the value deserializer. So what you’ll notice here is that the container listener
factory is tied to a specific type, which means when you won’t be able to
reuse the container listener across the application for all topics, you’ll need to
create a factory for each topic with different types. We’ll cover using
multiple container factories later in the chapter.

So far we’ve shown injecting the configuration properties and setting up the



infrastructure for consuming Kafka records. But you’ll want to produce
messages as well from your application, so we’ll cover that next.

Listing 11.6. Configuration required for producing messages

private Map<String, Object> producerConfigs() {  #1

  Map<String, Object> configs = new HashMap<>();

  configs.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);

  configs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

                             StringSerializer.class);

  configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

                             JsonSerializer.class);

  return configs;

}

@Bean

public ProducerFactory<String, LoanApplication> producerFactory() { 

    return new DefaultKafkaProducerFactory<>(producerConfigs());

}

@Bean

public KafkaTemplate<String, LoanApplication> kafkaTemplate() { #3

    return new KafkaTemplate<>(producerFactory());

}

Here you see the configuration required for producing records to Kafka in
your application. But you’ll notice that there’s a KafkaTemplate bean and it
uses the ProducerFactory, in a Spring application you won’t interact directly
with a KafkaProducer. Instead all operations for producing to a Kafka topic
are handled by the KafkaTemplate, but under the covers it’s still using a
producer. The KafkaTemplate provides some convenience methods over
working directly with the producer, but the abstraction won’t change too
much how you produce messages with a plain KafkaProducer, there’s a few
changes and we’ll cover those a bit later on in the chapter.

What is the same as working with a plain producer is that the KafkaTemplate
is bound to a particular class for producing to Kafka. In the producer
configuration Map at annotation one, you’ll notice you provide specific
serializing classes for the key and value of the Kafka you’ll send to the
producer. So if you require to produce different types to more than one topic
you’ll have to provide a separate KafakTemplate for each class type. We’ll
cover sending different record types later on in the same section where we



take a deeper look at the ConcurrentKafkaListenerContainerFactory.

There’s one last part of the configuration we should cover before moving on.
In a production Kafka environment it’s typical that individual developers
wont' have the the responsibility for creating topics, that’s handled usually
handled by someone in the cluster operations role. But for local development,
that is another matter.

The Spring-Kafka library provides for automatically creating topics for you
when starting the Spring container, you simply need to provide some minor
infrastucture in the form of Spring Beans for a Kafka AdminClient and
NewTopic instances for each topic you want created. Let’s take a look at the
code you need to provide in your configuration class:

Listing 11.7. Cofiguration code required for auto topic creation

@Value("${num.partitions}")

private int partitions;

@Value("${replication.factor}")

private short replicationFactor;

@Value("${loan.app.input.topic}")

private String loanAppInputTopic;

@Bean

public KafkaAdmin kafkaAdmin() { #1

    return new KafkaAdmin(Map.of(

                         AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,

                         bootstrapServers));

}

@Bean

public NewTopic loanAppInputTopic() { #2

    return new NewTopic(loanAppInputTopic,

                        partitions,

                        replicationFactor);

}

So by providing the KafkaAdmin and NewTopic Spring Beans, when you start
the Spring container (when you start the application), any of the NewTopic
instances in the configuration class result in the creation of the topic it



respresents, if it already exists, that’s fine the original topic remains. Also
take note here of the use of injected properties for the topic name, partitions
and the replication factor. Should these values differ from environment to
environment, your configuration code is blissfully unware of these changes,
and will work with whatever values are provided to them.

At this point we’ve fully covered how you would use basic Spring-Kafka
(non Spring Boot) configuration class for getting a Kafka application up and
running. Before we move on to how you wrap all this up and start the
application, let’s take a look at how you would do provide the same
configuration in a Spring Boot application, I promise it will worth your time
as it will greatly simplify things for you in most cases.

Listing 11.8. Class declaration for configuration class with Spring Boot

@Configuration  #1

@EnableKafka    #2

public class LoanApplicationAppBootConfiguration {

...

}

So with the class declaration we can see one simplification right away. You
don’t need to provide a @PropertySource annotation, when using Spring
Boot, it will automatically look in the src/main/resources directory for a
file named application.properties. If you give the file a different name or
place it in a different location, then you’ll need to tell Spring where to find it
like we did with our previous non-Spring Boot application previously. But
savings in configuration don’t stop there, lets take another look at the
configuration class:

Listing 11.9. Basic configuration is substantially less with Spring Boot

@Configuration

@EnableKafka

public class LoanApplicationAppBootConfiguration {

    @Value("${application.group}")

    private String groupId;

    @Value("${loan.app.input.topic}") #1

    private String loanAppInputTopic;



    //Other configurations left out for clarity

   @Bean

   public NewTopic loanAppInputTopic() { #2

        return new NewTopic(loanAppInputTopic,

                            partitions,

                            replicationFactor);

   }

   //Other NewTopic beans left out for clarity

Other than some additional fields for injected property values and NewTopic
beans for creating the required topics, this all all there is to the configuration
class for the Spring Boot application! As you can see, using Spring Boot
removes most of the infrastructure configuration required for a Spring Kafka
application. This simplification isn’t always the case, as we’ll see later in the
chapter when we change the applciation requirements. But for the cases
where you just need the Kafka infrastructure classes as they come straight out
of the box, using Spring Boot is a faster path for development.

For the most part, I’d reccomend using Spring Boot most of the time when
building a Spring Kafka application, as the savings in configuration effort are
worth it.

Before we move on to our detailed look into the specific Spring Kafka
components, let’s take a look at how you’d start the Spring Boot application.

Listing 11.10. Main class for starting a Spring Boot application

@SpringBootApplication(scanBasePackages = "bbejeck.spring.application") #1

public class LoanApplicationProcessingApplication {

public static void main(String[] args) {

 SpringApplicationBuilder applicationBuilder =

  new SpringApplicationBuilder(LoanApplicationProcessingApplication.class) #2

            .web(WebApplicationType.NONE);        #3

    ConfigurableApplicationContext context = applicationBuilder.run(args); #4

   // Some details left out for clarity

 }

}



So as you’ve come to expect at this point, to create a Spring Boot application,
you just need to provide a @SpringBootApplication annotation at the top of
the class with main method for starting it. We also provide the base packages
containing the different components that we want the Spring container to pick
up and include.

At annotation two, you see the SpringApplicationBuilder class which we
use for building the applciation, this also creates an ApplicationContext
which is the main interface for configuring the different components specifed
for the Spring Container. What you see at annotation three is specifying that
you don’t want a web application started.

By default, Spring Boot starts a web server (Apache Tomcat is the default),
but for our purposes here, we won’t need it, so we set the type to NONE. Later
on in the chapter, you’ll build another Spring Boot application where you’ll
need the embedded web server. At annotation four your starting application
and storing the returned ConfigurableApplicationContext which as
mentioned before, you can use to retrieve application components. Let’s take
a look at how you can use the ApplicationContext to retrieve a Spring
component once you’ve started built the application:

Listing 11.11. Retrieving a Spring bean from the ApplicationContext

ConfigurableApplicationContext context = applicationBuilder.run(args); #1

MockLoanApplicationDataGenerator producer =

     context.getBean(MockLoanApplicationDataGenerator.class); #2

producer.sendData();

So once you’ve started the application, we need to produce records to Kafka.
So to do that we’ve created a class to generate some mock loan application
records and once we’ve started the application we retrieve the
MockLoanApplicationDataGenerator and start producing records. You
could also retrieve it by using a String with a name provided with the @Bean
annotation.

So far we’ve covered how to configure a Spring-Kafka application and how
you would start it. What’s next for us to go over is the different components
of the application and how it all ties together. We won’t focus to much on the
business logic of the application itself, as that’s not what really important



here, in the applications you’ll develop you will provide the specific logic
needed.

11.1.2 Spring Kafka application components

For your loan processing application there are two main components, one to
recieve the application information and apply the approval algorithm to each
incoming record which contains all the information required to process it.
Once this first processor applies the algorithm to a given application,
meaning it’s either approved or not, the result gets produced to a Kafka topic,
one for approvals, another for rejections, and a third topic for quality
assurance. A certain number of processed loan applications are chosen at
random for review (by a human!) to make sure the alogorithm is performing
as expected.

With that background in mind, let’s take a look at the
NewLoanApplicationProcessor starting with the class declartion and
constructor first:

Listing 11.12. NewLoanApplicationProcess declaration and constructor

@Component  #1

public class NewLoanApplicationProcessor {

  @Value("${accepted.loans.topic}")  #2

  private String acceptedLoansTopic;

  @Value("${rejected.loans.topic}")

  private String rejectedLoansTopic;

  @Value("${qa.application.topic}")

  private String qaLoansTopic;

  private final KafkaTemplate<String, LoanApplication> kafkaTemplate; 

  @Autowired #4

  public NewLoanApplicationProcessor(

           KafkaTemplate<String, LoanApplication> kafkaTemplate) {

      this.kafkaTemplate = kafkaTemplate;

  }



At the top where you declare the class name there is a @Component
annotation. When starting the application, the Spring container scans for any
classes with this annotation and includes them in the application context.
Having a @Component at the top of the class allows for having dependencies
injected into it or for it to be used as a dependency where other classes have a
reference to it.

Next you see the injection of propties for the variables containing the name of
the different output topics, and this should look familiar as you saw the same
thing in the configuration class. Finally take a look at annotation three and
four. Annotation three is the variable declared for a KafkaTemplate instance
and we’ve decorated the constructor with an @Autowired annotation, which
instructs the Spring container we want it to provide any of the parameters
found there. In our case we’ll get the KafkaTemplate created at container
startup.

  Note

You can also have autowired dependencies at the field level.

Now let’s take a look where the "rubber meets the road" so to speak in the
method where you handle the loan application processing:

Listing 11.13. Loan processing handling in the method

@KafkaListener(topics = "${loan.app.input.topic}", #1

              groupId = "${application.group}") #2

public void doProcessLoanApplication(LoanApplication loanApplication) {

  // Most details left out for clarity

  boolean loanApproved = debtRatio <= 0.33 && loanApplication.getCreditRating() > 650;

  String topicToSend = loanApproved ? acceptedLoansTopic : rejectedLoansTopic;  

  LoanApplication processedLoan = LoanApplication.Builder.newBuilder( loanApplication).withApproved(loanApproved).build();

  kafkaTemplate.send(topicToSend, processedLoan.getCustomerId(), processedLoan); 

  if (random.nextInt(100) > 75) {

      kafkaTemplate.send(qaLoansTopic, processedLoan.getCustomerId(), processedLoan); 

  }

}



By placing the @KafkaListener annotation at the top of this method, the
Spring container uses the ConcurrentKafkaListenerContainerFactor to
create a KafkaListener instance that wraps a KafkaConsumer that will
consume records from the topic(s) specified in the @KafkaListener
declaration. We’ll explore the relationship between listeners, consumers, and
topics soon, but let’s continue for the moment with specifying listener itself.

At annotation one you’re specifying the topic name for the listener, which
under the covers, a KafkaConsumer subscribes to, then at annotation two,
you’re setting the consumer group id for the underlying consumer. For both
attributes you’ll notice you’re not supplying hard-coded values, but instead
you’re utilizing property replacements, which again gives you more flexible
code. Should the topic(s) or group id need to change, you only need update
the properties file, versus changing and re-compiling your code.

You also see here the idea of a message-driven-pojo; there’s nothing specific
to Kafka about this class. But by applying one line of code, you’ve taken a
basic Java class and converted into one that can handle receiving messages
from a Kafka broker.

After you’ve processed the loan application (I’ve intentionally left the code
out here as it’s not importing to learning how to use Spring), you configure
the destination topic for the loan based on its approval status. Then you use
the KafkaTemplate to produce the processed loan application record back to a
Kafka topic.

Here, you’ll notice some of the convenience the KafkaTemplate provides,
you’re only providing a topic name, key, and a value. If you recall from our
chapter on Kafka clients, when sending a record with the KafkaProducer,
you first need to create a ProducerRecord instance to send to Kafka. The
KafkaTemplate#send method returns a ListenableFuture<SendResult<K,
V>> object and to get the result of the send you’d need to wait for the future to
complete by executing the ListenableFuture#get method, but that would
block the application until the get method returned a result. You can provide
the ListenableFuture a callback that will process the result of the send
asynchronously.

In our example here, you’re not capturing the returned ListenableFuture but



we’re going to revisit how you’re using the KafkaTemplate among other
things and update the loan processing application. But before we do that, we
have one more piece of the application to consider, the post loan processing.

Listing 11.14. Post loan processing class

@Component  #1

public class CompletedLoanApplicationProcessor {

@KafkaListener(topics = "${accepted.loans.topic}", #2

              groupId = "${accepted.group}")

public void handleAcceptedLoans(LoanApplication acceptedLoan) {

    ....

}

@KafkaListener(topics = "${rejected.loans.topic}", #2

              groupId = "${rejected.group}")

public void handleRejectedLoans(LoanApplication rejectedLoan) {

   ....

}

@KafkaListener(topics = "${qa.application.topic}", #2

               groupId = "${qa.group}")

public void handleQALoans(LoanApplication qaLoan) {

   ....

}

}

We won’t spend much time here as you’ve already learned about the
@Component and @KafkaListener annotations, but there are is some
additional information we’ll get into here about the @KafkaListener. I said
before that the @KafkaListner annotation means the Spring container creates
KafkaListenerContainer for each annotation it encounters when starting the
application. Even if you provide another method with @KafkaListener (and a
different group id) it will create a separate listner container.

This means since you have four methods decorated with @KafkaListener,
there will be four KafkaListenerContainer instances running for your
application. Each listener container will wrap one KafkaConsumer subscribed
to the topic(s) specified in its declaration. The consumer created by the
container factory will consume from all paritions of the topic. Before we



move on to the next section, there’s one final subject to cover with the
@KafkaListener.

In all the examples seen so far, you’ve placed the annotation at the method
level. You can place it at the class level as well and that involves some
additional work on your part. Let’s look at simple example:

Listing 11.15. KafkaListener at the class level requires handler annotations on the method

@Component

@KafkaListener(topics = "${loan.app.input.topic}", groupId = "${application.group}") #1

public class NewLoanApplicationProcessorListenerClassLevel {

  @KafkaHandler      #2

  public void doProcessLoanApplication(LoanApplication loanApplication) {

      // Handle the loan application

  }

  @KafkaHandler(isDefault = true)  #3

  public void handleUnknownObject(Object unknown) {

     // Handle the unknown object

  }

As you can see here, setting the class as the KafkaListener is simple as
placing the @KafkaListener at the class declaration along with the
@Component annotation. The extra steps you need to take are to have at least
one method annotated with @KafkaHandler. Here you can see we added
@KafkaHandler to the doProcessLoanApplication and another
handleUnknownObject marked as the default method with the isDefault
attribute. When using the entire class as a KafkaListener Spring determines
the method to use based on the parameter type of its signature.

This selection process means that all @Handler methods must have a single
parameter and the different methods can’t have any ambigutity between their
parameter types. In this class level @KafkaListener example we’ve added a
handler for a Kafka record that contains a value with a type other than the
LoanApplication, but it’s not representive as the best use of using the
KafkaListener at the class level, I’m including this here for completeness.
I’m going to assert that the canonical use of a listener at the class level would
be when you are consuming mulitple types from a single topic - for example:



Listing 11.16. KafkaListener at the class level for consuming multiple types

@Component

@KafkaListener(topics = "${multi.topic.input}", groupId = "${multi.input.group}") #1

public class NewLoanApplicationProcessorListenerClassLevel {

  @KafkaHandler      #2

  public void doSomethingWithLong(String someString) {

      // Do something with a String type

  }

  @KafkaHandler      #3

  public void doSomething(Long longNumber) {

      // Do something with the Long object

  }

  @KafkaHandler      #4

  public void doSomething(Double doubleNumber) {

      // Do something with the double

  }

  @KafkaHandler(isDefault = true)  #5

  public void handleUnknownObject(Object unknown) {

     // Handle the unknown object

  }

Here each method has a distinct type for Spring to make the selection for
handling the records. So the question is, when would you choose to place the
@KafkaListener at the class level vs. the method level? While there isn’t a
hard and fast answer, I’m going to take the opininated approach that one
should always favor using a listen at the method level. Topics should for the
most part represent a single event type and have an appropriate name that’s
easy to reason why that topic exists. Of course there are always exceptional
situations that you’ll need to account for, and if one of them is multiple types
in a single topic then using a listener at the class level is one way to handle it.

So that wraps up our coverage of building your first Spring-Kafka
application, but we’re not going to stop here. There’s more advanced
functionality we can cover that should be more broadly applicapable to you
for creating an event stream application. For single partition topics or topics
with low traffic levels a single consumer for all partitions may be sufficient.
But what if we want a faster way to consume, i.e. not on single thread?



Additionally, what about getting the key of the Kafka record and other
metadata (timestamp, partition) or sending records of different types? That’s
exactly what we’er going to cover next.

11.1.3 Enhanced application requirements

You’ve gotten your online loan operation off the ground and things are going
well. But there’s some changes that will make the application better. Those
changes you’ll need to make are:

1. Add more partitions to the input topic
2. With more partitions, parallelize the application so that you have a

consumer per partition
3. Capture the key and timestamp of the incoming record
4. Track the offset and timestamp of records produced

While that seems like quite a list, fortunately the changes needed to
accomodate them are easily achievable. We’re only going to focus on the
changes you’ll need to make for the Spring-Kafka application, I’m going to
assume changes like partition number and domain objects you already know
how do (the updates will be in the source code for you to examine).

Let’s take on increasing the partition count and how you’re going to increase
the concurrency of your application to improve throughput. Chapter four
covered the Kafka clients and we discussed the unit of parallelization of a
Kafka topic is the partition. Generally speaking to increase the througput of a
Kafka application, you add more partitions (or over partition at the beginning
with growth in mind) with the aim of assigning a single consumer for each
partition. By using a dedicated consumer for each partition you can maximize
the throughput of the application (I’m making a generalization here, of course
there’s always exceptions and different considerations that can occur).

You’ve done some analysis and determined that the input topic for the loan
application should have three partitions for optimal throughput. This number
takes into account the current level of applications and the increase you
expect in the near future. You’re also going to increase the partitions of the
post-processing topics, but to a lesser degree, with an increase to two



partitions each. The thought process behind the smaller partition increase is
that each loan application will only exist in one of two states - approved or
rejected, so with an approval rating hovering 50%, each path in the post
processing will only need to accomodate half of the expected max loan
application traffic.

Earlier in the chapter you saw that by using Spring Boot and the
@EnableKafka annotation, the Spring container automatically created a
ConcurrentKafkaListenerContainerFactory for you. To refresh your
memory the listener container factory creates a KafkaListenerContainer for
each method decorated with @KafkaListener. So if you increase the number
of partitions in your input topic, as things stand now you’ll have a single
consumer for all partitions, but you want to have a consumer for each
partition. The good news is that while Spring Boot provides a lot of
functionaliy out of the box, you’re always free to provide customized
configurations, which we’ll do now.

The first step is to create a Spring Bean for a
ConcurrentKafkaListenerContainerFactory, but we’re going to set a
specific property, concurrencyLevel :

Listing 11.17. Increasing the concurrency level for a container listener factory

@Bean

public ConcurrentKafkaListenerContainerFactory<String, LoanApplication>

                    kafkaListenerContainerFactory() {  #1

    ConcurrentKafkaListenerContainerFactory<String, LoanApplication>

           kafkaListenerContainerFactory =

            new ConcurrentKafkaListenerContainerFactory<>();

    kafkaListenerContainerFactory.setConsumerFactory(consumerFactory());

    kafkaListenerContainerFactory.setConcurrency(partitions);  #2

    return kafkaListenerContainerFactory;

}

This configuration here is very similar to the one you created in the non-
Spring Boot application earlier with one distinct difference. We’ve used the
setConcurrency method, setting it to the number of configured partitions.
The impact of setting the concurrency level to the same number of partitions
means you get a KafkaConsumer per partition, which is what you’ll need for
maximum throughput.



Another point to consider is that we’ve used the same name for method as the
default expected by the container - why is that? By using
kafkaListenerContainerFactory for the method name (remember without
providing a name attribute the method name becomes the bean name), the
Spring container will pick up your custom container factory instead of
creating the default factory with the same name.

So using this "shadow" bean naming process, your processing class will
automatically use the updated container factory with no code changes, which
keeps your code flexible as it will pick up and use either container.

That’s not to say you should always use the same name when overriding a
Spring Boot default. When using a custom factory can give it any name you
want, you’ll just need to explicitly tell the KafkaListener which container
factory to use by adding an additional attribute, containerFactory to the
@KafkaListener annotation:

Listing 11.18. Adding the custom container factor for the listener

// In the configuration class

@Bean("custom-container")  #1

public ConcurrentKafkaListenerContainerFactory<K, V>

                                       customContainerFactory()

// In the @Componet class

@KafkaListener(groupId = "${application.group}",

                containerFactory = "custom-container", #2

Above is the alternative to providing a custom container. In the configuration
class you create the custom container and you supply a name to the @Bean
annotation and in the @Component class you use the same name for the
containerFactory attribute.

  Note

For increasing the concurrency of the
ConcurrentKafkaListenerContainerFactory you can also provide a
configuration spring.kafka.listener.concurrency and set it equal to the



desired number. In our case it could be something like
spring.kafka.listener.concurrency=${num.partitions} assuming the
num.partitions comes earlier in the application.properties file. I’ve
chosen to create a custom container factory to serve as an example of
providing an override to the defaults provided by Spring Boot. Another
approach would be to provide a concurrency attribute directly with
@KafkaListener annotation.

Now that you’ve achieved the desired consumer-per-partition there’s an
additional consideration you’ll have to take into account, you now have a
multi-threaded processing application.

The Spring container creates a separate thread equal to the number you set for
the level of concurrency. Creating new threads is expected and is essential for
increased throughput. But this means each thread will call the listener method
*concurrently* as well. The concurrent calls are fine as long as the method is
*thread-safe* i.e. there’s no shared mutable state.

  Tip

It’s easy to find the threads associated with particular Kafka listener by
adding adding an id attribute to the @KafkaListener annotation. The Spring
will use the id you provide as part of the thread name making it easy to
identify which threads are consuming from different topics.

In the example code there is a single KafkaTemplate instance that is shared
across all threads, but since the underlying KafkaProducer is thread-safe
itself, the template is as well. It would be wise to keep the Kafka listener
methods stateless otherwise you’ll need to add synchronization to your code
to make sure you get deterministic results.

  Note

I’m not going to cover Java threading or synchronization here but a quick
Google search on the topic will yield plenty of resouces for you explore the
subject.



Before we move on we have two more applciation improvements you still
need to implement from our list above. To refresh your memory the remaing
requirements are:

1. Capture and log the key and timestamp of the incoming loan application
2. When producing the processed loan result, log the offset and timestamp

of the produced record. Also if there’s an error producing the record,
you won’t have an offset and timestamp, so you’d like to log out the
error as well.

For getting the key and timestamp, as well as other metadata associated with
the incoming Kafka record you’ll apply @Header annotations to addtional
parameters to your listener method. So the changes you’ll make to your loan
processing class will look like this:

Listing 11.19. Getting the message key and timestamp from the incoming Kafka record

public void doProcessLoanApplication(LoanApplication loanApplication,

          @Header(KafkaHeaders.RECEIVED_TIMESTAMP) long timestamp, #1

          @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) String key) #2

So by adding the @Header anntation with the desired specific header you can
now retrieve the original timestamp and message key. There are other header
values available such as the topic, partition, and offset.

  Tip

When extracting header information for consumed records make sure to
specify KafkaHeaders.RECEIVED_X the KafkaHeaders class constants for
both producer and consumer records and the ones for the consumer records
start with RECEIEVED.

Now that you’ve retrieved the message key and the timestamp of the
incoming record your next task is to log the offset and timestamp of the
produced record after loan processing.

Earlier in the chapter we demonstarted thatthe loan application processing
class, NewLoanApplicationProcessor after processing a loan, produces a



record back to Kafka with the approval status of the loan determining the
topic. To refresh your memory here’s the line of code responsible for
producing the record:

Listing 11.20. Producing a processed loan

 kafkaTemplate.send(topicToSend, processedLoan.getCustomerId(), processedLoan);

We also mentioned that the KafkaTemplate.send method returns a
ListenableFuture<SendResult<K, V>> and you could extract the timestamp
and offset directly at that point. But that as the drawback of needing to call
the ListenableFuture.get method which will block your application’s main
thread until the get method returns, meaning waiting until the produce request
completes. You’d rather not take that approach as that would impact
performance. So what you can do in this case is supply the returned
ListenableFuture a callback that it will execute asynchronously when the
produce request completes whether it’s a sucess or failure.

Listing 11.21. Creating a callback for getting the correct information after completed produce
request

private final ListenableFutureCallback<SendResult<String, LoanApplication>>

           produceCallback = new ListenableFutureCallback<>() {  #1

  @Override

  public void onFailure(Throwable ex) {  #2

       LOGGER.error("Problem producing a record", ex);

  }

  @Override

  public void onSuccess(SendResult<String, LoanApplication> result) {  

      RecordMetadata metadata = result.getRecordMetadata();

       LOGGER.info("Produced a record to topic {} at offset{} at time {}",

               metadata.topic(), metadata.offset(), metadata.timestamp());

  }

};

Now that you have your callback created, it’s simply a matter of adding it to
the resulting CompletableFuture after executing a KafkaTemplate.send
action:

Listing 11.22. Adding a callback for notification of completed produce requests



ListenableFuture<SendResult<String, LoanApplication>> produceResult = 

    kafkaTemplate.send(topicToSend,

                       processedLoan.getCustomerId(),

                       processedLoan);

produceResult.addCallback(produceCallback); #2

Now you’ll get notification of compeleted produce requests even in the case
of a failure. This is a very similar process to what you saw in the chapter on
Kafka clients, but when working directly with a KafkaProducer you add the
callback directly as a parameter to the KafkaProducer.send method.

This wraps up our coverage of building a Kafka application using Spring
Kafka and now we’ll move on to using Spring Kafka with Kafka Streams
applications.

11.2 Spring Kafka Streams

Just as we saw how Spring Kafka with Spring Boot can simplify building
Kafka based applications, there is also support for building Kafka Streams
applications. It’s a little different since Kafka Streams already abstracts away
a lot of the details of working with Kafka. As with using any tool or
framework there’s tradeoffs to consider. In this case the tradeoff I’m referring
to is simplified application development vs. more control over the application
buidling process.

When using Spring Boot with Kafka Streams, there are some advantages with
having to deal with less infrastructure code, but there’s some loss of controll
over how to build the application, vs. if you were to just use Spring for it’s
dependency injection capability. We’ll take a look at both approaches so
you’ll be able to make an informed decision on which approach is best for
you. We’ll also cover one of the great features of using Spring Boot with
Kafka Streams; Spring Boot applications will by default launch a web-server
when you start them.

Having a web-server automatically with our Kafka Streams application is a
real advantage when it comes to using the Interactive Queries. Interactive
Queries (IQ from now on) give the ability to directly query the results of



stateful operations in Kafka Streams. So within your Spring - Kafka Streams
application you can include web based classes to handle incoming requests
for serving up IQ queries. This has the potential for simplifying your
application architecture, we’ll explain how that works a litte later on.

For now let’s get started with a simple Kafka Streams application, first using
all the Spring Boot utilites and then just using Spring for wiring up the
application.

Let’s say you’ve decided to re-do your Kafka loan application to use Kafka
Streams. It will still use the same logic for loan approval, but instead of using
listeners and the KafkaTemplate, it’s all handled in Kafka Streams. This will
allow you do perform aggregations on loan approavals and rejections directly
in one place.

Your first step towards using Spring Kafka with Kafka Streams is that you’ll
add an additional annotation to the configuration class:

Listing 11.23. Adding an additional annotation to the configuration class

@SpringBootApplication(scanBasePackages = {"bbejeck.spring.datagen",

                       "bbejeck.spring.streams.boot"}) #1

@EnableKafka        #2

@EnableKafkaStreams  #3

@Configuration #4

public class KafkaStreamsLoanApplicationApplication {

  //Configuration items left out for clarity

}

Of the four annotations listed above, you’ve seen three of them already, but
the @EnableKafkaStreams is new and it’s required to activate Spring Boot’s
support for running Kafka Streams applications.

  Tip

You’ll notice at annotation one we’ve specified the packages to scan for
components to include in the container. You won’t need to do this if you have



everything needed for the application in the same package as the annotated
configuration class.

By applying the @EnableKafkaStreams annotation Spring will create a
wrapper around the KafkaStreams instance and it will contol the lifecycle
(starting and stopping) of the streams application. Before we go on to
building the Kafka Streams application itself, there’s one more bit of
configuration you’ll need to provide.

Listing 11.24. Configurations required for Kafka Streams with @EnableKafkaStreams

@Bean(name =

     KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)

KafkaStreamsConfiguration kafkaStreamsConfiguration() {

  Map<String, Object> streamsConfigMap = new HashMap<>(); #2

  streamsConfigMap.put(StreamsConfig.APPLICATION_ID_CONFIG,

                       "loan-processing-app");

  streamsConfigMap.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,

                       bootstrapServers);

  return new KafkaStreamsConfiguration(streamsConfigMap); #3

}

When starting a Spring Boot application with the @EnableKafkaStreams
annotation, it will expect to find a Spring Bean named
defaultKafkaStreamsConfig providing the configurations used to create the
StreamBuilderFactoryBean which creates the StreamsBuilder instance and
will also controll the starting and stopping of the Kafka Streams application.
If you don’t require any modifications on the KafkaStreams instance itself,
then at this point you’ve done everything needed to run a streams application,
all that is left is to create the application itself.

But before we move on to building the application, let’s quickly discuss what
steps you can take when you do need access to the underlying KafkaStreams
instance. For those times you require access Spring provides the
StreamsBuilderFactoryBeanCustomizer interface, which is a functional or
single abstract method interface. The functional interface is ideal to work
with as you can use a Java lambda to represent it vs. a concrete object
instance. So when would you need to access the KafkaStreams object?
Consider the case where you’d like to have a StateListener to notify you of
when KafkaStreams transitions to a running state so you can log the active



tasks which contains topic-partition assignment information.

So to set the StateListener you’d create two new bean definitions in your
configuration class. The first is the KafkaStreamsCustomizer which gives
you access to KafkaStreams before it starts. The second bean is the
StreamsBuilderFactoryBeanCustomizer which accepts the
KafkaStreamsCustomizer for applying your desired changes.

Listing 11.25. Kafka Streams customizer for setting a StateListener

@Bean

KafkaStreamsCustomizer getKafkaStreamsCustomizer() {

 return  kafkaStreams ->

    kafkaStreams.setStateListener((newState, oldState) -> { #1

    if (newState == KafkaStreams.State.RUNNING) {

        LOG.info("Streams now in running state");

      kafkaStreams.metadataForLocalThreads()

        .forEach(tm -> LOG.info("{} active task info: {}",

                         tm.threadName(), tm.activeTasks())); #2

    }

    });

}

So with the the KafkaStreamsCustomizer we can access the KafkaStreams
instance in this case to set the StateListener. Now to get this bean into the
StreamsBuilderFactoryBean you create the second bean definition like this:

Listing 11.26. Creating the StreamsBuilderFactoryBeanCustomizer to apply KafkaStreams
object settings

@Bean

StreamsBuilderFactoryBeanCustomizer kafkaStreamsCustomizer() {#1

  return  streamsFactoryBean ->

 streamsFactoryBean

     .setKafkaStreamsCustomizer(getKafkaStreamsCustomizer()); #2

}

With these two bean definitions added to the configuration class, you now
have access to the KafkaStreams object.

Now that we’ve covered how to access the KafkaStreams object in the Spring
Boot application, let’s move on to building the application itself.



When you build the Kafka Streams application with the
@EnableKafkaStreams annotation it’s different from what we’ve seen before.
To show the differences, let’s dive right into an example. Let’s say you’ve
taken your loan application and converted it from using Kafka producer and
consumer clients to a Kafka Streams application:

Listing 11.27. Converted Kafka producer and consumer app to Kafka Streams

@Component #1

public class LoanApplicationProcessor {

  @Value("${loan.app.input.topic}")

  private String loanAppInputTopic;

@Autowired

public void loanProcessingTopology(StreamsBuilder builder) { #2

KStream<String, LoanApplication> processedLoanStream = #3

   builder.stream(loanAppInputTopic,

                Consumed.with(stringSerde,

                        loanApplicationSerde))

                .mapValues(loanApp -> {

double monthlyIncome = loanApp.getReportedIncome() / 12;

double monthlyDebt = loanApp.getReportedDebt() / 12;

double monthlyLoanPayment =

        loanApp.getAmountRequested() / (loanApp.getTerm() * 12);

double debtRatio =

        (monthlyDebt + monthlyLoanPayment) / monthlyIncome;

boolean loanApproved =

       debtRatio <= 0.33 && loanApp.getCreditRating() > 650;

return LoanApplication.Builder.newBuilder(loanApp)

                              .withApproved(loanApproved)

                              .build();

  });

}

From looking at this code listing, it’s standard Spring configuration;
declaring a class as a @Component and inject the desired objects with the
@Autowired annotation, this time on a method not a constructor. I mentioned
previously there are some differences and if you look closely at annotation
two and notice the void return type for the loanProcessingTopology



method. The method doesn’t return the StreamsBuilder instance since it’s
managed by the Spring container.

When starting the container to build a streams application Spring will pass
around a singleton StreamsBuilder to all methods that reference it an have
the @Autowired annotation on it. Then when StreamsBuilderFactoryBean
begins the process of starting the KafkaStreams instance it will execute the
StreamsBuilder.build method.

The impact of having Spring control the StreamsBuilder instance in this way
means you can potentially have the classes making up your topology spread
out among different classes. While it’s possible to take this approach, I’d still
reccomend having the entire topology in a single class, as when it comes time
to debug any potential issues it will be much easier to track down what’s
wrong by viewing the entire topology in one place.

You’ve just seen how to build a Kafka Streams application with Spring Boot
and the @EnableKafkaStreams annotation. Taking this approach does make
things easier as Spring takes care of most of the configuration details for you.
But everything is a trade-off - and here what you gain in ease of starting up
and managing Kafka Streams you also lose some visibility into what’s going
on with the application.

But there’s another trade-off you can make; giving up some of the
convenience in exchange for more control and visibility into how Kafka
Streams is put together and we’re going to cover that next. You’re still going
to use Spring to wire the application together, but instead of the Spring
container managing the lifecycle of the KafkaStreams object and how the
topology gets put together, you’ll take on that responsibility.

We’re going to take the same Kafka Streams application and make some
small changes, starting with the class that builds the topology.

Listing 11.28. First change is to rename the class to reflect its role

@Component

public class LoanApplicationTopology { #1

 // Details left out  for clarity



}

The first change is to rename the LoanApplicationProcessor to
LoanApplicationTopology. By changing the name you’re declaring the
intent that the class will contain entire topology for the Kafka Streams
application, not just a single processor or section of it. Next you’ll update the
signature of the loanProcessingTopology method which itself will require
an additional change:

Listing 11.29. Updating the signature of the loanProcessingTopology method and explicity
creating a StreamsBuilder

private final KafkaStreamsConfiguration streamsConfigs;

@Autowired

public LoanApplicationTopology(  #1

     KafkaStreamsConfiguration streamsConfigs) {

    this.streamsConfigs = streamsConfigs;

}

public Topology topology() { #2

  StreamsBuilder builder = new StreamsBuilder(); #3

// Build topology

return builder.build(streamsConfigs.asProperties()); #4

So the first change to support the method change is to update the constrcutor
to autowire the KafkaStreamsConfiguration, you’ll see next how this is
related to refactoring the method. The next change at annotation two, you’ve
changed the name of the method to topology to reflect its role and you’ve
removed the StreamsBuilder parameter, creating it directly instead at
annotation three. You’ve also updated the return type from void to Topology
reflecting the change at last line of the method where you execute
StreamBuilder.build returning the Topology instance.

The next change is actually an addition - creating a class to support creating
the KafkaStreams instance and controlling the lifecycle of the streams
application.

Listing 11.30. Creating a class to support Kafka Streams



@Component

public class KafkaStreamsContainer {

//Details left out for clarity

@Autowired

public KafkaStreamsContainer(

       final LoanApplicationTopology loanApplicationTopology, #1

       final KafkaStreamsConfiguration appConfiguration) {  #2

    this.loanApplicationStream = loanApplicationTopology;

    this.appConfiguration = appConfiguration;

}

//Details left out for clarity

Here you’ve created the KafakStreamsContainer class that will handle the
tasks required for building and running the Kafka Streams application. Notice
the constructor has the @Autowired annotation and two parameters the
LoanApplicationTopology and the KafkaStreamsConfiguration class that
Spring will inject for us. Next let’s look at how you’ll use these two objects
to get Kafka Streams up and running.

Listing 11.31. Creating and running Kafka Streams

@PostConstruct #1

public void init() {

    Properties properties = appConfiguration.asProperties();

    Topology topology = loanApplicationStream.topology(); #2

    kafkaStreams = new KafkaStreams(topology, properties); #3

    kafkaStreams.setStateListener((newState, oldState) -> {

      if (newState == KafkaStreams.State.RUNNING) {

        LOG.info("Streams now in running state");

        kafkaStreams.metadataForLocalThreads().forEach(tm ->

          LOG.info("{} assignments {}", tm.threadName(), tm.activeTasks()));

      }

        });

    kafkaStreams.start(); #4

}

Next you add the init method that creates the KafkaStreams instance and
starts it running. But the question is when to call the init menthod? This part
is handled by Spring for you via the PostConstruct you’ve decorated the
method with at annotation one. When you add a PostConstruct to a



container compoent class, the Spring container will execute the method when
the object is fully constructed , so in this case after the required dependencies
are injected, Spring will call the init method automaticall creating the
KafkaStreams instance and starting it up. But we did say you would handle
the full life-cycle so what about stopping a KafkaStreams application? For
that you’ll add one more method:

Listing 11.32. Stopping the Kafka Streams application

@PreDestroy  #1

public void tearDown(){

    kafkaStreams.close(Duration.ofSeconds(10)); #2

}

To stop the application you’ll use a similar approach, placing the PreDestroy
annotation on a method that the Spring container will call before it tears
down the managed component when the Spring container is stopping.

Now the changes are complete for giving you a bit more visibility into the
construction of the Kafka Streams application and how it’s started and
shutdown. There isn’t a right or wrong decision here with the approach you
can take, it comes down to personal preference and the different requirements
you are faced with.

As we wrap up this chapter on Spring Kafka/Kafka Streams lets talk about
the great support Spring Boot provides for a powerful feature of Kafka
Streams - Interactive Querries.

11.3 Learning about Interactive Queries

Before we get into how to use Spring for Interactive Queries (IQ), let’s have
a dicussion on what IQ is. When you build a stateful Kafka Streams
application, which is one with at least one aggregation, reduce etc. if you
provide a name to the underlying state store, you can query against that store
to view the contents, essentially you can view the status of the stateful
operation in real-time.

To enable IQ, you only need to provide one configuration,



application.server which contains a host and port that you’ll use to
connect to a Kafka Streams application instance to run a query. If you have
more than one Kafka Streams instance (all with the same application id), then
each instance must provide a unique host:port combination.

To refresh your memory, Kafka Streams ends up with a state store per task,
and since each task represents a single partition, you end up with a store per
partition. What make this important to our discussion here is that when you
deploy multiple Kafka Streams application instances, each instance is only
responsible for a subset of the total number of tasks (partitions), as Kafka
Streams spreads the processing load across other the other applications. For
example, if the source topic has six partitions, and you’ve started three
application instances, each one will be responsible for two partitions each.

Since the state stores for Kafka Streams are local for each instnace, this
means the impact of spreading the processing load is that your state is
distributed across muliple machines. Here’s an illustration that should help
make this concept clear to you:

Figure 11.2. State in Kafka Streams ends up distributed across multiple machines



So given that your state is distributed and the state stores in Kafka Streams
are key-value pairs how does one know which instance to query? The good
news Kafka Streams provides the infrastructure so you don’t have to know
which instance is responsible for the partition where a given key is - you pick
one instance to query and if its state doesn’t have the key in question, it



knows which one does and it will forward the query on your behalf and
return the results to you.

This is possible because the rebalance protocol allows for encoding arbitrary
data in the payload. So when Kafka Streams application instances rebalance,
in addition to providing all the partitions each one is responsible for, they
also include the individual application.server configurations. Let’s look at
a graphic illustrating this process:

Figure 11.3. Rebalance distributes metadata to all instances with the same application.id



So each application ends up with metadata knowing all the partitions each
other instnace (again with the same application id) is responsible for.



Additionally the application server information is known for each one as
well, so when you query a Kafka Streams application with a given key, it
determines the partition the key would fall into by taking the hash of the key
modulo the number of partitions (assuming hash partitioning). If the current
Kafka Steams app doesn’t have that partition, it knows exactly which one
does and it will forward the request since it knows the host and port for the
queries on that machine as well.

This is a somewhat complex process, so here’s an illustrationg showing this
process in action:

Figure 11.4. Determining the correct host for a given query



While Kafka Streams provides the internal plumbing for application instances
with the same application id to share metadata, the communication layer
between them all is not provided, you need to implement that part yourself
and that’s what you’re going to do in the next section.

11.4 Building an Ineractive Queries app with Spring
Boot



We’re going to take a step by step process to building the Interactive Query
layer in your Kafka Streams application. The good news is that you’ve
already laid the groundwork with the last example application,
bbejeck.spring.streams.container.KafkaStreamsLoanApplicationApplication

Here are the steps you’re going to take next:

1. Enable the Spring Boot application to have an embedded web-server
when starting up

2. Add a RestControler to handle incoming query requests either directly
from users or sibling applications

3. Inside the controller class add logic to process queries
4. Build an HTML index page to make REST API calls and continually

displaying loan application results in single page

Along the way with building this you’ll also learn about the latest version of
Interactive Queries (IQv2) which is a big improvement over the first version.

So let’s tackle each item on our list in order, starting with enabling a web-
server on start-up. With our previous Spring boot application in the main
method we explicity disabled the web-server like this:

Listing 11.33. Disabling the web-server

SpringApplicationBuilder applicationBuilder =

new SpringApplicationBuilder(LoanApplicationProcessingApplication.class)

                .web(WebApplicationType.NONE); #1

You turned off the web-server as you had no need of it, this application ran
with no need to accept external requests. But now you want to expose your
app to receive requests over HTTP to query the state of your loan processing.
To do this you change the WebApplicationType enum parameter to the
SpringApplicationBuilder :

Listing 11.34. Enabling a web-server for a Spring Boot application

SpringApplicationBuilder applicationBuilder =

new SpringApplicationBuilder(KafkaStreamsLoanApplicationApplication.class)

                .web(WebApplicationType.SERVLET); #1



So the only change you need to make is switch the type from NONE to SERVLET
and this will enable the web-server when starting your application.

  Note

Servlets are a Java technology that you can deploy on web-servers for
building web-based applications. We won’t go into details on it here but you
can find more information by going to
https://www.oracle.com/java/technologies/servlet-technology.html

Now the nest step is for you to create a class that will handle the incoming
query requests.

Listing 11.35. Creating the controller for responding to HTTP requests

@RestController  #1

@RequestMapping("/loan-app-iq") #2

public class LoanApplicationController {

  //Details left out for clarity

}

The first step is to create the class and add two new annotations at the class
declaration level. The @RestController annotation does to main things for
us - marks this class as a web-controller and also enables the automatic
conversion to JSON of the object you return in repsonse to a request. The
@RequestMapping annotation maps incoming HTTP requests to request-
handling classes and methods. The annotation at the class level specifies that
this controller handles all requests with the specified base URL.

Before we go any futher, let’s take a minute to define what the term
controller means. A web controller is part of a MVC (Model-View-
Controller) design patterns for web-applications. What your going to build in
this section is a Spring MVC application. The model represents the data, the
view is responsible for presenting visual component, and the controller is
repsonsible for accepting and procesing incoming requests and providing a
response to them displayed via the view component.



Here’s an illustartion depicting how the MVC components fit together in a
web application:

Figure 11.5. MVC components in a web application

Now with the brief description of the MVC pattern for web applications, lets
get back to building out the controller. So far we’ve covered declaring the
class and providing the required annotations for to controller to recieve HTTP
requests, now let’s look further into how it will work:

Listing 11.36. Dependencies required by the controller

@RestController

@RequestMapping("/loan-app-iq")

public class LoanApplicationController {

  @Value("${store.name}")  #1

  private String storeName;



  @Value("${application.server}")

  private String applicationServer; #2

  private final KafkaStreams kafkaStreams; #3

  private final RestTemplate restTemplate; #4

  @Autowired

  public LoanApplicationController(KafkaStreams kafkaStreams,

                                   RestTemplate restTemplate) {

      this.kafkaStreams = kafkaStreams;

      this.restTemplate = restTemplate;

   }

}

Here you see the injected configuration fields that you are accustomed to
seeing by now and the @Autowired annotation on the contstructor injecting
the KafkaStreams instance built in the KafkaStreamsContainer and the
RestTemplate from Spring which you’ll use to communciate the other Kafka
Steams applications when handling requests with keys the current application
instance is not responsible for.

To inject the KafkaStreams instance we will need to make a quick
modification to the KafkaStreamsContainer class:

Listing 11.37. Exposing a KafkaStreams object as a Spring bean in the KafkaStreamsContainer
class

@Bean  #1

public KafkaStreams kafkaStreams() {

    return kafkaStreams;

}

By adding this method to the KafkaStreamsContainer class with the @Bean
annotation, when any other class in the container has a reference to a
KafkaStreams object as dependency, the Spring container executes this
kafkaStreams method to inject into the class. In our case here when the
Spring container executes the LoanApplicationController contstructor, it
follows this exact process. You’ll see how the controller uses the
KafakStreams object next when we look at a request handling method.

Listing 11.38. Method annotated to handle incoming requests for a given loan category



 @GetMapping(value = "/loantype/{category}") #1

 public QueryResponse<LoanAppRollup> getCategoryRollup(@PathVariable

                             String category) {  #2

    KeyQueryMetadata keyMetadata =   #3

            getKeyMetadata(symbol,

                Serdes.String().serializer());

  if (keyMetadata == null) {

        return QueryResponse.withError(String.format(

    "ERROR: Unable to get key metadata after %d retries", MAX_RETRIES));

  }

}

The @GetMapping annotation on the method means web requests with this
URL: http://loan-app-iq/loantype/<category> are routed to the
LoanApplicationController.getCategoryRollup method. The
KeyQueryMetadata is an important object as it will contain the information
required to determine if the current instance queried is responsible for the
partition of the key involved in the query. The getKeyMetadata is simply an
internal method and it’s worth us takeing a quick look at what’s going there:

Listing 11.39. Implementation of the getKeyMetadata method retrieving KeyQueryMetadata

private <K> KeyQueryMetadata getKeyMetadata(K key,

                     Serializer<K> keySerializer) {

  int currentRetries = 0;

  KeyQueryMetadata keyMetadata =

      kafkaStreams.queryMetadataForKey(storeName,

                                       key,

                                       keySerializer); #1

  // Details left out for clarity

  return keyMetadata;

In this code block you can now see one of the reasons we need a reference to
the KafkaStreams object, the ability to extract essential metadata for the key
involved in the query. One of the key fields of the KeyQueryMetadata is the
HostInfo field, which contains the host and port of the server instance with
the Kafka Streams instance containing the data in question. So to enable this
comparison of host information, when building the controller you’ll use the
application.server configuration to build a HostInfo object for
comparision:



Listing 11.40. Building a HostInfo object from the application server configuration

@PostConstruct

public void init() {

    String[] parts = applicationServer.split(":");

    thisHostInfo = new HostInfo(parts[0],

                    Integer.parseInt(parts[1])); #1

}

Here in the init method (executed by the Spring container after the
controller is fully constructed), you build a HostInfo object. You’ll use this
to compare it to the one returned in the metadata as shown here:

Listing 11.41. Comparing the HostInfo from key metadata with the HostInfo for the current host

// Details left out for clarity

 if (targetHostInfo.equals(thisHostInfo)) { #1

  Set<Integer> partitionSet =

        Collections.singleton(keyMetadata.partition());

  StateQueryResult<ValueAndTimestamp<LoanAppRollup>> keyQueryResult =

      kafkaStreams.query(StateQueryRequest.inStore(storeName) #2

          .withQuery(query)

          .withPartitions(partitionSet));

  QueryResult<ValueAndTimestamp<LoanAppRollup>> queryResult =

         keyQueryResult.getOnlyPartitionResult(); #3

} else {     #4

  String path = "/loantype/" + type;

  String host = targetHostInfo.host();

  int port = targetHostInfo.port();

  queryResponse = doRemoteRequest(host, port, path); #5

}

To determine if you’ve queried the correct host, you compare the HostInfo
object retrieved from the metadata with the one created by the controller. If
they are equal, then you run the query with the KafkaStreams.query method
and extract the results and return the results. Otherwise you extract the host
and port information and execute the search remotely on the correct host with
a REST API call. There’s several details in this code snipet that I’m skipping



over, so let’s take a minute to go over those details now.

  Note

With these code examples there are a few internal objects created for the
support of running examples and are not part of Spring or Kafka Streams. I
won’t describe those as they don’t add anything to what you’re learning, but
you can view them by looking at the source code for the book.

The key component of Interactive Queries is the Query<R> interface that all
queries must implement. There are currently 4 implementations:

1. KeyQuery
2. RangeQuery
3. WindowKeyQuery
4. WindowRangeQuery

You’ll use a KeyQuery when your looking for results of an individual key.
The RangeQuery is useful when you have a need to see results from a range of
keys. You’d use a WindowKeyQuery with windowed statestores as it allows
you to specify a time from and to for the query, and the WindowRangeQuery is
also for windowed stores and it allows you to specify a time range for
querying. Other than the specific parameters you provide to the individual
Query object, you’ll end up using them in the same manner when executing
the query.

You create a KeyQuery by using the static factory method provided by the
class:

Listing 11.42. Creating a KeyQuery

 KeyQuery<String, ValueAndTimestamp<LoanAppRollup>>

         keyQuery = KeyQuery.withKey(loanType);

So with the KeyQuery.withKey method you provide the key and the method
returns a KeyQuery object. The types on the KeyQuery are the expected query
results; key and the value which is wrapped in a ValueAndTimestamp



abstraction, which provides the timestamp of the record stored in the
statestore as well.

Then next step is to create a StateQueryRequest object that you’ll pass to the
KafkaStreams.query method. It uses the builder pattern as you’ll see here:

Listing 11.43. Building the StateQueryRequest

StateQueryRequest.inStore(storeName) #1

          .withQuery(query) #2

          .withPartitions(partitionSet)) #3

The StateQueryRequest object contains the essential information like the
name of the statestore, the query object, and the partition for the key (you got
this earlier from the KeyMetadata object). Other than the required parameters
of the store name and the query itself, the other parameters of the
StateQueryRequest are optional and include the partitions, requiring active
tasks, and the amount of acceptable lag when querying standby tasks. We’ll
cover queries with standby tasks a little later in this chapter.

After executing the KafkaStreams.query method you’re set capture the
resulting StateQueryResult in a variable:

Listing 11.44. Setting the query result in a variable

StateQueryResult<ValueAndTimestamp<LoanAppRollup>> stateQueryResult = 

         kafkaStreams.query(StateQueryRequest.inStore(storeName)

                            .withQuery(query)

                            .withPartitions(partitionSet));

Once you have the StateQueryResult you can extract the underlying result
from the state store. The overall query result(s) are stored in a Map with the
partition as the key and a QueryResult object as the value. In this case we
know the result only relates to single partition since it’s a key query so we
can use the convenience method
StateQueryResult.getOnlyPartitionResult:

Listing 11.45. Extracting the query result

 QueryResult<ValueAndTimestamp<LoanAppRollup>> queryResult =



     stateQueryResult.getOnlyPartitionResult(); #1

 ValueAndTimestamp valueAndTimestamp = queryResult.getResult() #2

 valueAndTimestamp.getTimestamp(); #3

 valueAndTimestamp.getValue(); #4

Now that you’ve extracted the result you’re ready to return it for rendering in
the web application:

Listing 11.46. Returning the result to the web view

// Details left out for clarity

queryResponse =

    QueryResponse.withResult(queryResult.getResult().value()); #1

// possibly add some metadata from query

return queryResponse; #2

After getting the raw result you store it a custom object capable of storing
some metadata for display in the view as well. If you recall from a little
earlier in this section, everything is automatically converted to JSON for
rendinging in the web application. For the multi-partition results you’ll
extract the Map and iterate over the contents:

Listing 11.47. Extracting multiple partition results

//Details left out for clarity

Map<Integer, QueryResult<KeyValueIterator<String,

  ValueAndTimestamp<LoanAppRollup>>>> allPartitionsResult =

       result.getPartitionResults(); #1

        allPartitionsResult.forEach((key, queryResult) -> { #2

            // Do somethign with the results

        });

There are a couple of important notes here to keep in mind. First is that when
retrieving the results of a query if you use the getOnlyPartition method, but
there are actually mutiple partition results, the QueryResult object will throw
an exception. But the rule is pretty clear in this case, with a query involving a
single key i.e KeyQuery you can safely use the single partition extraction
approach and for all others you’ll want to iterate over the result map.



So far you’ve seen running the query on the current host, but how would you
execute it on a remote one when the current does not have the key? A bit
earlier in this section we saw an internal method doRemoteQuery used by the
controller for that case. Here is the implementation of that method:

Listing 11.48. Executing a query on the remote host

//Details left out for clarity

 private <V> QueryResponse<V> doRemoteRequest(String host,

                                             int port,

                                             String path) {

  QueryResponse<V> remoteResponse;

  try {

      remoteResponse = restTemplate.getForObject(BASE_IQ_URL + path,

                                            QueryResponse.class,

                                            host,

                                            port); #1

  } catch (RestClientException exception) {  #2

      remoteResponse = QueryResponse.withError(exception.getMessage());

  }

  return remoteResponse;

For the case where another Kafka Streams application instance is responsible
for the key, you’ll use the RestTemplate to issue a REST API call to the
remote host, where it will follow the exact execution path and return the
result to the current host which will return it to view for rendering.

Before we wrap up this chapter, we have a couple of additional items to
discuss. First is the different approach you’ll take with a range query. Unlike
the key query where you can specifically query a single host, the range query
needs to execute against all Kafka Streams instances, due to the distributed
parition assignment. To execute the query across all instances, you’ll want to
know which ones contain the state store in question and its partition
assignment:

Listing 11.49. Setting up to query all instances for a range query

Collection<StreamsMetadata> streamsMetadata =

                  kafkaStreams.streamsMetadataForStore(storeName); 

List<LoanAppRollup> aggregations = new ArrayList<>();



streamsMetadata.forEach(streamsClient -> {  #2

 Set<Integer> partitions =

            getPartitions(streamsClient.topicPartitions());

  QueryResponse<List<LoanAppRollup>> queryResponse =

                    doRangeQuery(streamsClient.hostInfo(), #3

            Optional.of(partitions),

            Optional.empty(),

            lower,

            upper);

Since you need to execute a range query across all hosts, you’ll need to use
the KafkaStreams.streamsMetadataForStore which returns metadata from
each Kafka Streams application that contains the store in its topology. You
can then iterate over the metadata for each one and execute the query for the
current instance and remotely for the rest.

The second item to discuss is the ability to query a standby task. When a
Kafka Streams instance goes offline, there will be a rebalallance to reassign
its partitions to the remaining active members. But this can take some time to
complete, so Kafka Streams allows to make the trade-off of availability over
consistency by allowing for querying a standby task. The trade-off is the
standby will not be fully caught up to the active before it went down but you
can still serve query results.

To query a standby, you’ll look for any error when executing a query on the
active host by catching a RestClientException. Then in your query
processing if you find an error, you’ll issue the query to a standby as shown
here:

Listing 11.50. Issuing a standby query in the event of an error querying the active host

if (queryResponse.hasError() && !standbyHosts.isEmpty()) {  #1

  Optional<QueryResponse<StockTransactionAggregation>> standbyResponse =

           standbyHosts.stream()     #2

          .map(standbyHost -> doKeyQuery(standbyHost,

                                         keyQuery,

                                         keyMetadata,

                                         symbol,

                                         HostStatus.STANDBY))

          .filter(resp -> resp != null && !resp.hasError())

          .findFirst();  #3

  if (standbyResponse.isPresent()) {



      queryResponse = standbyResponse.get();

  }

}

 return queryResponse; #4

So when detecting an error and standby tasks are enabled, you can elect to
query the standby task when you receive an error querying the active task. It
goes without saying that you must have standby tasks enabled via
configuration to use this feature.

11.5 Summary

Spring Kafka provides abstractions making it easier to work with Kafka.
You can use the standard approach of using standard Spring but you’ll
have to add the required configuration for the KafkaTemplate and
KafkaListener supporting classes. By contrast by using Spring Boot,
the level of configuration you’re required to provide is greatly reduced
by simply adding @SpringBoot and @EnableKafka annotations at the
class declaration level. Typically you’d want to place this on a
configuration class denoted with a @Configuration annotation as well.
When setting the concurrency level for a KafkaListener the Spring
Container will create a corresponding number of threads running a
KafkaConsumer for the listener. You must take care to ensure the method
decorated with the @KafkaListener annotation is thread-safe when
setting the concurrency level greater than one.
Spring Boot also provides an @EnableKafkaStreams annotation that
takes care of the life-cycle of working with Kafka Streams. But this is
not required and if you prefer to have more control over your stream
application you can use Spring just for the dependency injection
capabilities only.
Spring Boot by default starts a web server automatically with the
application, but you can opt to turn this off by using the
WebApplicationType.NONE. This embedded web server is great for
Kafka Streams applications as you’ll automatically have the serving
layer for Interactive Queries available.
By using the @RestController annotation on a controller class methods
handling web requests will automatically have the return objects



converted to JSON for the web response.



12 Testing
This chapter covers

Learning about the difference between unit and integration testing
Testing Kafka Producers and Consumers
Creating tests for Kafka Streams operators
Writing tests for a Kafka Streams topology
Developing effective integration tests

So far we’ve covered the component for building an event streaming
application: Kafka Producers and Consumers, Kafka Connect and Kafka
Streams. But there' an additional crucial part of this development I’ve left out
until now: how to test your application. One of the critical concepts we’ll
focus on is placing your business logic in standalone classes that are entirely
independent of you event streaming application, because that makes your
logic much more accessible to test. I expect you’re aware of the importance
of testing but I’d like cover what I consider the top two reasons for why
testing is just as necessary as the development process itself.

First as you develop your code, you’re creating an implicit contract of what
you and others can expect about how the code performs. The only way to
prove that the application works is by testing thoroughly, so you’ll use testing
to provide a good breadth of possible inputs and scenarios to make sure
everything work appropriately under reasonable circumstances. The second
reason you need comprehensive testing is helps you deal with the inevitable
changes that occur with software. Have a rigorous set of tests gives you
immediate feedback when the new code breaks the expected set of behaviors.

Additionally, when you do a major refactor of the application, having your
tests pass gives you level of confidence about releasing the updated software.
Even once you understand the importance of testing, writing tests for
distributed applications like Kafka Streams isn’t always straighforward. You
still have the option of running these applications with simple inputs and
observing the results, but there’s a serious drawback to using this type of



approach. You wan’t a suite of repeatable tests that you can run at any time
and that’s also part of your CI build. Another component of testing is you
want them to run as fast as possible so that means for a large segment of your
tests you’ll want them to run without a Kafka broker. Testing without a
Kafka broker is one of the most important points we’ll cover in this chapter.
But there will be times when you need a live broker to effictively test the
application. This tension between using a broker or not in testing is the
boundary I like to call between unit and integration testing.

12.1 Learning the difference between unit and
integration testing

In this section, I’m going to provide an opinionated definition here of unit
and integeration testing. I’ll define unit testing as a type of test that exercises
a specific sub-component of an application, a specific point of the logic. For
example, let’s say you have an international sales application and when you
receive an order you immediately convert the transaction amount into US
dollars. A unit test would validate only the currency coversion part, with
separate tests or a parametarized test for each type of expected currency.

These types of tests are usually at the method level of a class and run very
fast. The issue with unit testing is that often there’s external dependencies, a
Kafka broker for example, that’s required to run the application. So going
with our immediate example here, does that mean you need to run a Kafka
broker to feed the different currency types? The answer to that is no and I’ll
answer the question as to why you wouldn’t by way of an analogy.

Let’s say you’re in a play at your local theatre and you need to learn your
part. You don’t need any of the other actors on stage with you to do this, just
someone, a stand-in, to feed you the required lines for you to speak your
parts. Additionally, the person helping can tell you if you got everything
correct or not.

The same is true with a unit test, you don’t need the whole system to test a
smaller part, just a mechanism to provide the input and the ability to validate
the results. This mechanism is called a mock object. A mock is an object that
has the same interface as the remote connecting component, but no real



behavior. You explicity tell the mock object what it should do, such as
supplying specic values then you validate the results.

Going back to our analogy, there will definitely be times where need to get
everyone together to rehearse to make sure all the actors not only know their
lines correctly, but interact with each other as expected. In code this type of
test is an integration test, not the live production but there’s no mocking, all
external components are the real thing.

Integration tests are essential as well, but you won’t have the same number of
them as you will have unit tests. One of the big reasons you need more unit
tests vs. integration tests is speed of execution. A typical unit test will run in a
quarter to a half a second but an integration test can run for up to several
seconds as high as 30 seconds to a couple of minutes. Just those numbers for
a single test isn’t bad, but once you get test numbering in the hundreds or
thousands you can see the need to have your test suite run a quickly as
possible.

So what’s a good indicator for a writing a unit test vs an integration test? As I
stated earlier, you’ll want to use unit tests to validate the behavior of
individual methods. An indicator of needed an integration test is when you
need the actual behavior of a remote component. For example you want to
see how Kafka client application behaves when there is a rebalance, you’ll
want an itegration test where you can trigger an actual rebalance and validate
the behavior. But an integration test does not always equate to a production-
like environment, you’ll still want them contained to the code repository.
Continuing with our Kafka application example, you’ll run the integration
test with a Kafka broker in a docker image, so you still have a live broker, but
it’s contained completely in your local (i.e on your laptop) development
environment.

Let’s wrap up this section with a table sumarrizing the difference between
unit and integration testing:

Table 12.1. Unit testing comparted to integration testing

Type Purpose Speed Percentage of use



Unit

Method level,
finer-grained
logic, objects in
isolation

Subsecond Majority

Integration

Holistic,
integrated
components,
course grained

Seconds to
minutes Minority

12.2 Testing Kafka Producers, Consumers and
Connect

Let’s say you have an application that runs a simple currency exchange
operation. The results of non-US currency transactions are produced to a
Kafka topic named exchange-input. Your application consumes from the
exchange-input topic, converts the currency amount to US currency, then
produces the converted amount to another Kafka topic exchange-output.
Here’s an abbreviated look at the code:

Listing 12.1. Currency exchange class CurrencyExchangeClient

// Details left out for clarity

public void runExchange() {

  while (keepRunningExchange) {

        ConsumerRecords<String, CurrencyExchangeTransaction> consumerRecords=

               exchangeConsumer.poll(Duration.ofSeconds(5));

        consumerRecords.forEach(exchangeTxn -> {

            CurrencyExchangeTransaction tx = exchangeTxn.value();

            double convertedAmount =

            tx.currency().exchangeToDollars(tx.amount());

         CurrencyExchangeTransaction converted =

            new CurrencyExchangeTransaction(convertedAmount,

                      CurrencyExchangeTransaction.Currency.USD);

         ProducerRecord<String, CurrencyExchangeTransaction> producerRecord =

                  new ProducerRecord<>(outputTopic, converted);

         exchangeProducer.send(producerRecord...)



  }

 }

It’s a straightfoward application, and you’d like to have a test for this
currency exchange process. You’d like to write a test for this applicaiton, but
you don’t want to want to do it as a unit test, meaning no need for a live
Kafka broker. You’ve designed the class in such a way that only the
Consumer and Producer interface are the types expected:

Listing 12.2. Specifying interfaces in the constructor

public CurrencyExchangeClient(

   final Consumer<String, CurrencyExchangeTransaction> exchangeConsumer, 

   final Producer<String, CurrencyExchangeTransaction> exchangeProducer, 

   final String inputTopic,

   final String outputTopic) {

        this.exchangeConsumer = exchangeConsumer;

        this.exchangeProducer = exchangeProducer;

        this.inputTopic = inputTopic;

        this.outputTopic = outputTopic;

    }

By only specifying the interface used by your application (a proper design
decision at all times) you have set yourself up for easily testing the
CurrencyExchangeClient class by using the MockConsumer and
MockProducer classes. The MockConsumer implements the Consumer interface
and the MockProducer does likewise with the Producer interface so we can
substitue these in a test allowing you to fully execute the application without
the need of a live broker. Additionally you can verify the interactions of the
consumer and producer as well as the final output.

The tradeoff for using mock objects is that you have to specify all the
interactions and steps it needs to take. Let’s start with the consumer. There’s
a couple of things to consider when we construct the test. The currency
exchange client runs in a loop that will run indefinitely until the
CurrencyExchangeClient.close method is called. But since the method runs
in a loop, once we execute CurrencyExchnageClient.runExchange in the
test, controll won’t return to the test until unitl the loop terminates, giving us
a chicken-and-egg situation.



So what we need is a clean way to stop the loop without resorting to starting
an additional thread in the test. Dealing with a loop is a common situation
when dealing with code using a KafkaConsumer - idealy you want the
consumer to run indefinately as event streams never stop. Fortunately the
MockConsumer provides this capability with the schedulePollTask method
which allows you to provide a task that is added to a queue the consumer will
execute with a poll(Duration) call. Let’s take a look at this in action:

Listing 12.3. Using the schedule poll task

@Test

void runExchangeApplicationTest()

CurrencyExchangeClient exchangeClient = new CurrencyExchangeClient( 

                mockConsumer,

                mockProducer,

                "input",

                "output");

mockConsumer.schedulePollTask(() -> {  #2

    final Map<TopicPartition, Long> beginningOffsets = new HashMap<>();

    TopicPartition topicPartition = new TopicPartition("input", 0);

    beginningOffsets.put(topicPartition, 0L);

    mockConsumer.rebalance(Collections.singletonList(topicPartition));

    mockConsumer.updateBeginningOffsets(beginningOffsets);

});

Here you create an instance of the class under test, next you add the first task
to the queue for the consumer, in this case it’s all the required setup for
getting the MockConsumer in an initial state. Note that the tasks you supply
here don’t have to provide records the consumer will return from the poll
call, they are arbitrary code you need executed. However, at some point we
want to provide records so the consumer can return them, exercising the code
in the loop, which is what you’ll do next:

Listing 12.4. Adding a task for returning records

mockConsumer.schedulePollTask(() -> {

  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 0, null,

                                                  euroTransaction));

  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 1, null,

                                                  gbpTransaction));

  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 2, null,



                                                  jpyTransaction));

});

With this task, you’re supplying three records the consumer will return from
the next poll call and all of these records should be processed *in this order*
and passed to the producer. Finally you’ll add another task that will shut
down the exchange client application:

Listing 12.5. Adding a final task for shutting down the exchange loop

mockConsumer.schedulePollTask(exchangeClient::close);  #1

exchangeClient.runExchange();  #2

So the final task you provide here executes the
CurrencyExchangeClient.close method which will shutdown the
application. The next command is where you start the
CurrencyExchangeClient in the test, the loop will run three times, because
you’ve provided three tasks, and then the application shuts down cleanly. But
we have one more part to test and that is has the producer received the
expected records with the currency exchanged to US Dollars?

Listing 12.6. Validating the producer in the test

List<CurrencyExchangeTransaction> actualTransactionList = mockProducer

                                        .history()   #1

                                        .stream()

                                        .map((ProducerRecord::value))

                                        .toList();

assertThat(actualTransactionList.get(0), equalTo(expectedEUROToUS));

assertThat(actualTransactionList.get(1), equalTo(expectedGBDToUS));

assertThat(actualTransactionList.get(2), equalTo(expectedJPYToUS));

To validate that the producer receieved records with the correct currency
translation and in the proper order you use the MockProducer.history
method. You map the resulting ProducerRecord list to a list of the value
objects and then compare them one at time to the expected value constructed
earlier in the test.

You have tested the CurrencyExchangeClient application in a unit test that
runs very fast. You can and should add additional tests for different error



conditions that occur, but I won’t cover those here. Now let’s continue the
discussion of testing with mocks for testing Kafka Streams operators

12.3 Creating tests for Kafka Streams operators

A Kafka Streams topology will contain one or more operations that take a
Single Abstract Method (SAM) interface. This style of development allows
for quickly creating an application without the need for any concreate classes
for these operations, you can supply a lambda to satisify the behavior
requirements. But the trade-off by doing so makes it next to impossible to
provide a test for just that operation as your providing the implementation in-
line. The other option is to create a concrete class implmenting the expected
SAM interface, but some of these interfaces may need to work with other
Kafka Streams objects that are internal to the application, making testing a
challenge.

For example consider the Punctuator interface. Since it only has one
method, punctuate it qualifies as a SAM interface, but typically the
punctuator doesn’t work by itself and requires some collaboration with other
objects.

In this section I’m going to show you how to mock arbitrary interfaces and
objects with Mockito(https://site.mockito.org/) to make testing with external
collaborating objects a breeze.

For this example you’re going to create a test for the
bbejeck.chapter_9.punctuator.StockPerformancePunctuator class.
When executed, this punctorator instance will examine the contents of a state
store and foward any records that meet a certain criteria. I’m not going to
discuss how Kafka Streams use punctuators here, instead I’ll focus
exclusively on the test. To get an idea of the collaborators for the punctuator,
let’s take a look at the constructor:

Listing 12.7. The constructor for the punctuator shows us the required collaborators

 public StockPerformancePunctuator(double differentialThreshold,

         ProcessorContext<String, StockPerformance> context,

         KeyValueStore<String, StockPerformance> keyValueStore) {



  this.differentialThreshold = differentialThreshold;

  this.context = context;

  this.keyValueStore = keyValueStore;

 }

As you can see, the first constructor parameter is a Java primitive type which
poses no issue with testing, but the other two are Kafka Streams interfaces
and have expected behavior during the punctuation call. Namely you’ll iterate
over everthing from the state store and forward records matching a
performance metric. By using mock objects however, writing this test will be
straight forward. First let’s look at creating the mock objects for the test:

Listing 12.8. Creating the required mock objects

 @BeforeEach

 public void setUp() {

   context = mock(ProcessorContext.class);  #1

   keyValueStore = mock(KeyValueStore.class);  #2

   stockPerformancePunctuator =

     new StockPerformancePunctuator(differentialThreshold,  #3

                                    context,

                                    keyValueStore);

}

Creating a mock object is as simple as calling the Mockit.mock (shown here
as a static import) passing the class of the object or interface to mock. In our
case, Mocktio returns an object implmenting the expected interface so you
pass the returned objects to the StockPerformancePunctuator constructor to
satisfy the parameter requirements.

While mock objects satisfy the interface requirements, they lack any behavior
so the next step is to give the mock objects instructions on how they are
going to behave which you’ll do in the test method:

Listing 12.9. The test for the StockPerformancePunctuator

//Some details left out for clarity

@Test

void shouldPunctuateRecordsTest() {

    StockPerformanceProto.StockPerformance stockPerformance =

         getStockPerformance(); #1



    Iterator<KeyValue<String, StockPerformanceProto.StockPerformance>> storeKeyValues =

           List.of(KeyValue.pair("CLFT", stockPerformance)).iterator(); 

    long timestamp = Instant.now().toEpochMilli();

    Record<String, StockPerformanceProto.StockPerformance> record =

           new Record<>("CFLT", stockPerformance, timestamp); #3

    when(keyValueStore.all()) #4

          .thenReturn(

           TestUtils.kvIterator(storeKeyValues.iterator()));

    context.forward(record); #5

    stockPerformancePunctuator.punctuate(timestamp); #6

    verify(context, times(1)).forward(record);#7

Some of these steps are creating the necessary objects to work with. At
annotation one, you get a StockPerformance object created the correct
properties to pass the performance criteria. Then at annotation two you create
an Iterator by first building an ArrayList containing the KeyValue object
we want the store to return. Next we create a Record instance to give to the
ProcessorContext to forward.

At annotation four, your telling the mock KeyValueStore that when the all
method gets called return this stubbed out instance of a KeyValueIterator
(created by a testing utility method in the source code) which will use the real
iterator you created before. Then at annotation five you set the behavior for
the mock ProcessorContext, specifically it should expect to execute the
forward method with the Record object created before.

You run the Punctuator.punctuate method at annotation six, which will
exercise all the code inside the method including the mock objects. Finally,
you validate that the mock ProcessorContext did exactly what it was
expected to do.

In this section you’ve learned how to unit test Kafka Streams operators by
using mock objects to stand in for the collaborating objects. Next we’ll move
on to testing a Kafka Streams application without the need of mock objects or
a live broker.



12.4 Writing tests for a Kafka Streams topology

When it comes to testing a Kafka Streams application there should be two
levels of testing. It’s usually a best practice to write the different operations,
filter, mapping, and aggregations etc as concrete classes so you can test them
individually. But the Kafka Streams DSL takes most of these as lambda
functions, making it very easy to write a complete application without much
effort. But even with individual unit tests for these various functions, it’s
important to have tests that exercise the entire topology to ensure everything
works together as expected.

But since a Kafka Streams application is designed to work against a Kafka
broker, what can we do to develop fast tests? Enter the TopologyTestDriver
class, designed to allow you to fully test a Kafka Streams topology (complete
with state stores) but without the need for a live broker, a unit test for your
entire Kafka Streams topology. The best way to learn the
TopologyTestDriver is to dive in with some examples. Let’s start with our
first example of a Kafka Streams application - the Yelling Application.

Since this is our first time using the TopologyTestDriver we’ll step through
each part of setting the test up, but for future examples we’ll only show the
main part of what’s being covered.

Listing 12.10. Setting up to test Yelling Kafka Streams application

@Test

@DisplayName("Should Yell At Everyone")

void yellingTopologyTest() {

 KafkaStreamsYellingApp yellingApp = new KafkaStreamsYellingApp();   

 Topology yellingTopology = yellingApp.topology(new Properties());   

 Serializer<String> stringSerializer = Serdes.String().serializer(); 

 Deserializer<String> stringDeserializer =

          Serdes.String().deserializer();#4

So you start of like you normally would for any test method by decorating the
method with the @Test and @DisplayName annotations. Inside the method you
first create an instance of the KafkaStreamsYellingApp which you’ll need to
extract the topology on the next line with the
KafkaStreamsYellingApp.topology method. This way we get the extact



same topology used when running the application. You also create a
serializer and deserializer which you’ll see in action in the next step when we
get into the crucial parts of building the test:

Listing 12.11. Building the TopologyTestDriver and input and output topics

 try (TopologyTestDriver driver =

                 new TopologyTestDriver(yellingTopology)) { #1

    TestInputTopic<String, String> inputTopic = #2

            driver.createInputTopic("src-topic",

                                    stringSerializer,

                                    stringSerializer);

    TestOutputTopic<String, String> outputTopic = #3

            driver.createOutputTopic("out-topic",

                                    stringDeserializer,

                                    stringDeserializer);

In this next step you construct the TopologyTestDriver instance which will
be the harness for running the topology under test which you pass as a
constructor parameter as seen at annotation one. There are a few overloaded
constructors for the TopologyTestDriver and we’ll cover them a bit later
with some of the other examples.

Next you need to create a TestInputTopic that you’ll use to pipe records into
the topology for running the test. When you create the TestInputTopic the
name for the topic is the first parameter, and this name must match the topic
name you use when building the topology. The other parameters here are the
serializers for the keys and the values that you’ll provide for running the test.
The TestInputTopic will serialize each key and value you provide so that
your Kafka Streams application will recieve the expected byte arrays as it
would when running for real.

You’ll also need an output topic for the topology to write results to as well,
which is what you’re doing when you create the TestOutputTopic. It has the
same requirement for the topic name parameter that it must match the name
in the real application. For the TestOutputTopic you supply key and value
deserializers since the topology serializes the output, so you’ll need a way to
convert them back to concrete objects so you can validate the output of the



test.

The next step in our test is to send input records through the topology then
validate the output.

Listing 12.12. Sending records through the topology and validating results

List<String> inputValues = List.of("if you don't eat your meat",#1

                    "you can't have any pudding!",

                    "How can you have any pudding",

                    "if you don't eat your meat!" );

inputTopic.pipeValueList(inputValues); #2

List<String> expectedOutput = inputValues.stream()

                                        .map(String::toUpperCase)

                                        .toList();     #3

List<String> actualOutput = outputTopic.readValuesToList();#4

assertThat(actualOutput, equalTo(expectedOutput));#5

In this final section of the example, you first create some sample input
(Bonus points to name the artist and song lyrics we’re using). You’ll then
take the sample input and send through the topology by using the
TestInputTopic.pipeValueList method. In this case, since our Kafka
Streams application only works on the values of the key-value pair, it’s
perfectly acceptable to provide all the values in a list. You’re not limited to
sending in a list of values though, the TestInputTopic provides additional
methods for piping input into it for testing. I’ll list a few of them here:

Listing 12.13. Other methods for piping input from the TestInputTopic

pipeInput(K key, V value)  #1

pipeInput(K key, V value, Instant)  #2

pipeInput(TestRecord<K, V> testRecord) #3

I’d like to note that there are also overloaded versions of the methods listed
here accepting a List of the parameters, the case of the key, value variants
you’d use a List<KeyValue> . So the question is, when do you decide to use
the different method types? While there are no hard rules, I’ll provide a table
here with some general guidance:



Method Parameters Reason to use

single value or list of values

Simple topology, input topic has no
keys, no stateful operations or
stateful ones where you extract the
key entirely from the value

single key-value or list of key-value Stateful operations, input topic does
have keys

single TestRecord or list of
TestRecord

Topologies using timestamps and
headers, the test will advance stream
time based on the timestamps in the
records

Instant and Duration

Using an Instant provides the
timestamp for that record. Overloads
with an Instant and Duration will use
the Instant for the starting timestamp
and the Duration for the advance of
each record

As you can see from the table here, the method you use for piping input into a
Kafka Streams test is not arbitrary, it’s highly dependant on what actions the
topology performs. There’s also a similar variety of methods for reading
output from your Kafka Streams application with the TestOutputTopic

Listing 12.14. Methods for reading output from the test

readKeyValue()

readKeyValuesToList()

readRecord()

readRecordsToList()



The choice of method you’ll use to verify the output in general, could mirror
how you feed the records into the test. While not a strict rule, it’s something
that I do myself, dumping an entire list of input, then you can read a list out
and compare what’s expected versus what the acutal output you’ve received.
Other times you my want to pipe in a record assert the outcome, then pipe
another record assert the outcome and so on.

So far in this section I’ve introduced you setting up a TopologyTestDriver
for a basic Kafka Streams application, but it’s not limited to testsing simple
topologies. You can use the TopologyTestDriver to test highly complex
topologies and we’ll see some examples of that in the next section.

But before we move on to more advanced examples, I’d like to point out
another use for the TopologyTestDriver beyond testing your application for
correctness. You can also use the TTD for building quick prototypes of a
Kafka Streams application. For the most part using the TTD will provide
most of the functionality you’ll need for observing the behavior of a Kafka
Streaams application. There are some obvious parts that the TTD can’t
provide, task assignemts, rebalancing, repartititions ect, but otherwise you
can speed up your development by building a Kafka Streams application
without the immediate need for a Kafka broker. Of course you’ll always need
tests with a live broker and I’ll get to those a bit later in the chapter.

12.5 Testing more complex Kafka Streams
applications

In this section we’ll explore using the TopologyTestDriver for more
advanced Kafka Streams applications. Since we covered creating a test from
start to finish in the previous section, I’m only going to show the specific
sections of the test you’ll need to know for testing more advanced Kafka
Streams applications. For our first venture into advanced testing we’ll look
into a stateful application which performs a reduce operation. I should
mention here that for stateful topologies the TopologyTestDriver does not
buffer any records, each input generates an output record.

In chapter 7, we discussed building stateful Kafka Streams applications and
one of the operations covered is a reduce operation, so let’s look at a test for



one of the examples
(bbejeck.chapter_7.StreamsPokerGameInMemoryStoreReducer) now:

Listing 12.15. Setting up the test for a reduce operation

try (TopologyTestDriver driver = new TopologyTestDriver(topology)) {

  TestInputTopic<String, Double> inputTopic = driver.createInputTopic..

  TestOutputTopic<String, Double> outputTopic = driver.createOutputTopic..

 inputTopic.pipeInput("Anna", 65.75);  #1

 inputTopic.pipeInput("Matthias", 55.8);

 inputTopic.pipeInput("Neil", 47.43);

To refresh your memory the poker game Kafka Streams application has input
of players of an online poker game where the key is the username and the
value is their current score in the game. So here to start the test you input 3
scores, and you first want to verify the reduce happens in-order so you’ll
want to read the output for next 3 records and assert the order matches the
input order:

Listing 12.16. Asserting the order of records in a reduce

KeyValue<String, Double> actualKeyValue = outputTopic.readKeyValue();

assertThat(actualKeyValue, equalTo(KeyValue.pair("Anna", 65.75))); 

actualKeyValue = outputTopic.readKeyValue();

assertThat(actualKeyValue, equalTo(KeyValue.pair("Matthias", 55.8)));

actualKeyValue = outputTopic.readKeyValue();<

assertThat(actualKeyValue, equalTo(KeyValue.pair("Neil", 47.43)));

In this block, you read three records and assert the order of them matches
exactly to the order that you piped them into the application. So far so good,
but there’s another level of testing you can perform. This current application
is a stateful one, so there’s a state store involved keeping the state of the latest
reduce operation. While you just verified the output you can also inspect the
state store and validate what’s there matches the latest output:

Listing 12.17. Validating the state store contents matches latest output

KeyValueStore<String, Double> kvStore =



     driver.getKeyValueStore("memory-poker-score-store"); #1

assertThat(kvStore.get("Anna"), is(65.75));#2

assertThat(kvStore.get("Matthias"), is(55.8));

assertThat(kvStore.get("Neil"), is(47.43));

To validate the contents of a state store, the TopologyTestDriver provides a
getKeyValueStore method allowing you to retrieve a KeyValueStore by
name, which you do here and validate the contents match the latest records
output.

  Tip

The TopologyTestDriver provides several methods for retreiving store
types, session, window, and timestamped stores. For the cases where you
haven’t named the store, so it’s name is generated by Kafka Streams, there is
the getAllStateStores method returning a Map of the stores, from there you
can iterate over the entries and extract the store from there.

To conclude the test, you pipe in a bunch of records in random order. Since
you’ve already validated everything gets processed in order, you just want to
verify the total final output matches what you expect it to be. But since you
just inputed a bunch of random records you’ll need a way to get the final
output for each key:

Listing 12.18. Retrieving the last output for inputs

Map<String, Double> allOutput = outputTopic.readKeyValuesToMap(); 

        assertThat(allOutput.get("Neil"), is (252.43));

        assertThat(allOutput.get("Anna"), is (185.75));

        assertThat(allOutput.get("Matthias"), is (180.8));

        assertThat(kvStore.get("Anna"), is(185.75)); #2

        assertThat(kvStore.get("Matthias"), is(180.8));

        assertThat(kvStore.get("Neil"), is(252.43));

To get the last output per key you use the
TestOutputTopic.readKeyValuesToMap which presents a final table view of
the results where more recent entries update and replace previous ones. If you
want to separately inspect each result you’d use one of the



TestOutputTopic.readXXXToList methods.

  Note

With the built in Kafka Steams aggregations don’t feel compelled to test the
contents of a store. But for Kafka Streams applications involving a state store
with the Processor API, I’d highly reccomend validating the contents of the
store. I’ve provided this example to show how it’s done.

You just learned how to test a stateful application. Let’s move on to testing
an application where the timestamps of the records drive the behavior with a
test for the StockPerformanceApplication from chapter 9. For a quick
review of the StockPerformanceApplication only emits records after a
punctuation call scheduled to run every 10 seconds based on stream-time
which means the punctuation only executes when stream-time advances due
to timestamps of the records. To drive this punctuation behavior, you’ll need
to manually provide the corresponding timestamps like so:

Listing 12.19. Providing timestamps to drive stream-time behavior from test
bbejeck.chapter_9.StockPerformanceApplicationTest

try (TopologyTestDriver driver = new TopologyTestDriver(topology)) {

 //Details left out for clarity

inputTopic.pipeInput("ABC", transactionOne, instant); #1

inputTopic.pipeInput("ABC", transactionTwo,

                            instant.plus(15, ChronoUnit.SECONDS));#2

inputTopic.pipeInput("ABC", transactionThree,

                            instant.plus(25, ChronoUnit.SECONDS));#3

//Punctuation should fire 3 times

assertThat(outputTopic.getQueueSize(), is(3L));

So to drive the timestamp behavior you use the TestInputTopic.pipeInput
method that accepts the following parameters: a key, value, and a timestamp
for the record represented as a java.time.Instant. By providing these
timestamps with forward time setting, it will move the stream time
appropriately for Kafka Streams to perform the expected correct number of
punctuations. Here we validate the corrent number of times Kafka Streams



executed a punctuate call by verifying the number records contained in the
internal queue of the TestOutputTopic.

  Tip

For Kafka Streams applications with punctuation based on wallclock time
you’ll have to explicity move the internal wallclock time of the
TopologyTestDriver with the advanceWallClockTime(Duration
advanceAmount) method.

You should note that using the pipeInput method accepting a timestamp
parameter only advances stream-time tracked by the TopologyTestDriver
and does not advance the internal event time of the TestInputTopic. To
understand what this means is that if you provide another record to the
TestInputTopic without explictly providing a timestamp, that record’s event
time will be the intial timestamp of the TestInputTopic when you created it
in this case, as when you provide a record without an explicit timestamp it
uses the current event time of the topic. To advance the event time of the
input topic you’d take an approach like this:

Listing 12.20. Providing timestamps by advancing the event time of the input topic

inputTopic.pipeInput("ABC", transactionOne);

inputTopic.advanceTime(Duration.ofSeconds(15));#1

inputTopic.pipeInput("ABC", transactionTwo);

inputTopic.advanceTime(Duration.ofSeconds(25));#2

inputTopic.pipeInput("ABC", transactionThree);

This example provides the same behavior for the test, it validates Kafka
Streams performing 3 punctuations. Which approach should you use? The
answer to that depends on how you structure your test. If you provide a small
number of records, manually setting each timestamp is ideal as you can
clearly see the timestamp for each record. However if you have a test where
you want generate a large number of inputs, it could be cummbersome to set
a timestamp for each record; so advancting the event time of the
TestInputTopic at various intervals would be more effective in that case.

Before we wrap up our coverage of the TopologyTestDriver we have one



more example to cover regarding timestamps on records and that is when you
have windowed Kafka Streams applications. For this example you’ll look at a
test for the
bbejeck.chapter_8.window.StreamsCountTumblingWindowSuppressedEager

application, which does a windowed count of incoming records where the
window size is one minute with no grace period.

When you have a windowed operation with suppression, Kafka Streams will
not emit a result until the window closes, which means that you’ll need to
input records with timestamps moving stream-time forward to validate the
results. To do window stream-time advancement you’ll take a similar
approach to what you did with the test for punctuation found in the
bbejeck.chapter_8.window.StreamsCountTumblingWindowSuppressedEagerTest

Listing 12.21. Setting timestamps to move stream time ahead to emit suppressed windowed
results in

 Stream.generate(() -> "Foo").limit(10)

            .forEach(item -> inputTopic.pipeInput(item, item));  #1

assertThat(outputTopic.getQueueSize(), is(0L));  #2

inputTopic.pipeInput("Foo", "Foo",

    instant.plus(75, ChronoUnit.SECONDS));  #3

assertThat(outputTopic.readValue(), is(10L));  #4

For this test you first generate 10 records and input them into the topology
and assert that Kafka Streams has not emitted any records by validating the
queue of the output topic is empty. You then add another record and explicity
set it’s timestamp to one minute fifteen seconds in the future. Since the
window of the application is set to one minute, you should observe Kafka
Streams forward the count of all events by key from the previous window
with a count of ten.

  Note

This approach of setting forward timestamps to move stream time is the way
to test any windowed Kafka Streams application

So far you’ve learned about unit testing for Kafka producer and consumer
clients and testing a Kafka Streams application without the need of a live



broker. But unit testing and not using a broker is only part of the picture,
some of your tests really should include integration of a Kafka broker and
we’ll cover that in our final section next.

12.6 Developing effective integration tests

For developing an integration test for Kafka Streams the main difference
you’ll notice is the extra code needed to interact with a live broker.
Additionally you’ll have to account for how Kafka Streams works as live
application which is especially true when you have a stateful operation due to
the caching behavior. You’ll still write a JUnit 5 test, but it will operatate a
little bit differently mainly due to time it takes to start the broker, which
where we’ll start.

You’re going to use Testcontainers for providing a Kafka broker for the
integration tests. Testcontainers (https://www.testcontainers.org/) is a Java
library which provides access to external components running in Docker
containers directly in your JUnit tests. I’m going to assume you are familiar
with Docker, but for more information can go to the Docker website -
https://www.docker.com/ for more information.

  Note

Testcontainers for Kafka in JUnit 5 tests requires the following dependencies:
org.testcontainers:junit-jupiter:1.17.1 and org.testcontainers:kafka:1.17.1.
The source code for the book already does this but I’m adding this here for
your information.

Let’s get started with your integration testing by creating a test for the
bbejeck.chapter_8.window.StreamsCountHoppingWindow application. The
Testcontainers library provides annotations that you’ll use to annotate your
code that will handle the lifecycle of your Kafka Docker container. Let’s start
building the test now:

Listing 12.22. Building the integration tests with the required annotations for Testcontainers



@Testcontainers  #1

class StreamsCountHoppingWindowIntegrationTest {

@Container  #2

private static final KafkaContainer kafka =

   new KafkaContainer(

        DockerImageName.parse("confluentinc/cp-kafka:7.3.0.arm64"));  #3

You first create the test class StreamsCountHoppingWindowIntegrationTest
and add @Testcontainers at the class level. The @Testcontainers
annotation is a JUnit Jupiter extension and it automatically manages the
lifecycle for any containers in the test by finding any fields with a
@Container annotation. You can see the @Container here annotating the
KafkaContainer field. When you define the field as static the container is
shared with all test methods meaning it starts before the first test and shuts
down after the last test completes.

Should you define the container field as non-static then the container starts
and stops for each test. Unless you have a specific reason for stopping and
starting a container for each test, I’d recommend using the static field
approach as this will save a few CPU cycles by only starting and stopping the
container once.

At annotation 3 you are creating the KafkaContainer instance by passing a
DockerImageName object which you create by passing in a string in the
standard Docker format (registry/name:tag).

  Note

I’m not going to cover Docker but you can learn more about it in
https://www.manning.com/books/docker-in-practice-second-edition and
https://www.manning.com/books/docker-in-action-second-edition from
Manning books.

As far as setting up the Kafka Docker container for the test you are done!
What’s left is for us to discuss the elements you’ll need for running the Kafka
Streams application in the test. Since Kafka Streams gets its input from topics
and produces the final results to a Kafka topic as well, you’ll need a



KafkaProducer to feed a topic for the test and a KafkaConsumer to help in
validating the test results.

Let’s take a look at the details you need to put together: .Setting the test up
with producer and consumer configurations

 @BeforeEach

 public void setUp() { #1

  //Details left out for clarity

    streamsCountHoppingWindow = new StreamsCountHoppingWindow();

    kafkaStreamsProps.put("bootstrap.servers",

              kafka.getBootstrapServers());#2

     kafkaStreamsProps.put(StreamsConfig.APPLICATION_ID_CONFIG,

              "hopping-windows-integration-test");

    //Producer configs

    producerProps.put("bootstrap.servers",

              kafka.getBootstrapServers());  #2

    producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

                           StringSerializer.class);

        producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

                          StringSerializer.class);

    //Consumer configs

        consumerProps.put("bootstrap.servers",

               kafka.getBootstrapServers());  #2

        consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

                                  StringDeserializer.class);

        consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

                                  LongDeserializer.class);

        consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG,

                                 "integration-consumer");

        consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,

                                 "earliest");

        Topics.create(kafkaStreamsProps,

                      streamsCountHoppingWindow.inputTopic,

                      streamsCountHoppingWindow.outputTopic);#3

In the test setUp method you set all the required configurations for Kafka
Streams, producer and, consumer clients. You wont' directly create a
KafkaProducer and KafkaConsumer in the test,relying instead on some static



helper methods to produce and consume records as needed in the test and I’ll
cover those methods soon. The last bit of code you see in the setUp method is
creating the required topics. There’s a corresponding method tearDown
executed after each test completes as well:

Listing 12.23. The teardown method run after each test

@AfterEach

public void tearDown() {

    Topics.delete(kafkaStreamsProps,

                  streamsCountHoppingWindow.inputTopic,

                  streamsCountHoppingWindow.outputTopic);

}

The tearDown method deletes all the topics created before the test ran. It’s
important to follow this practice of creating and deleting topics for each test
ensuring we have a clean starting point so the results aren’t affected by the
running of a previous test. To do accomplish the creation and deletion of
topics we use the utility class bbejeck.utils.Topics provided in the book’s
source code.

Now let’s get into the heart of the integration test. Since the Kafka Streams
application under test, StreamsCountHoppingWindow uses hopping windows
(windows that have an advance smaller than the window size) with a size of 1
minute with an advance of 10 seconds you’d like to provide values in such a
way that you can clearly see the overlap of each window advance, meaning
each time the window moves forward by 10 seconds, the count includes
previous results until the window size is reached, then you’ll see the count to
start to decline.

Here’s an illustration showing what we want our test to validate:

Figure 12.1. Integration test for a hopping window count should increase up to the window size
then start declining



  Note

Since I’ve covered Kafka Streams windowing in a previous chapter, I’m only
going to focus on details relevant for the test.

Now that you have all setup details complete let’s get to writing the test itself:

Listing 12.24. Writing the test for a hopping window Kafka Stream application

@Test

@DisplayName("Integration test for hopping window")

void shouldHaveHoppingWindowsTest() {

    final Topology topology =

         streamsCountHoppingWindow.topology(kafkaStreamsProps);  #1

    AtomicBoolean streamsStarted = new AtomicBoolean(false);

    try (KafkaStreams kafkaStreams =

            new KafkaStreams(topology, kafkaStreamsProps)) {

        kafkaStreams.cleanUp();

        kafkaStreams.setStateListener((newState, oldState) -> { #2

            if (newState == KafkaStreams.State.RUNNING) {

                streamsStarted.set(true);



            }

        });

        kafkaStreams.start(); #3

        while (!streamsStarted.get()) {  #4

            time.sleep(250);

        }

In the test method you create the KafkaStreams instance and before starting
you set a StateListener for when Kafka Streams goes into a RUNNING
state, that way we can wait to start the test until Kafka Streams is ready for
work. While this step is not required, it’s my preference to start the test once
that application is in a known state.

Now let’s move on to producing input for Kafka Streams to work with:

Listing 12.25. Producing records for the Kafka Streams application

long startTimestamp = Instant.now().toEpochMilli();  #1

for (int i = 1; i <= 6; i++) {

  List<KeyValue<String, String>> list =

  Stream.generate(() ->

           (KeyValue.pair("Foo", "Bar"))).limit(i).toList();  #2

  TestUtils.produceKeyValuesWithTimestamp(  #3

            streamsCountHoppingWindow.inputTopic,

            list,

            producerProps,

            startTimestamp,

            Duration.ofMillis(100L));

  startTimestamp += 10_000;  #4

}

Here you’re using the helper method
TestUtils.produceKeyValuesWithTimestamp from the book’s source code
that takes care of all the details of produing message to Kafka for the
StreamsCountHoppingWindow to process. For each iteration we send the
number of records matching the loop index and increment the timestamp by
10 seconds to ensure the next batch of records produced will end up in next
the window advance. So what we expect to see is each advance will include
the sum of the previous records up to the window size boundary, then we
should see the count start declining as records age off.

So test our expectations we add the following code to the test:



Listing 12.26. Setting an expected list of records we expect Kafka Streams to produce

List<KeyValue<String, Long>> expectedKeyValues =

    List.of(KeyValue.pair("Foo", 1L),

    KeyValue.pair("Foo", 3L),

    KeyValue.pair("Foo", 6L),

    KeyValue.pair("Foo", 10L),

    KeyValue.pair("Foo", 15L),

    KeyValue.pair("Foo", 21L), #1

    KeyValue.pair("Foo", 20L),

    KeyValue.pair("Foo", 18L),

    KeyValue.pair("Foo", 15L),

    KeyValue.pair("Foo", 11L),

    KeyValue.pair("Foo", 6L));

List<KeyValue<String, Long>> actualConsumed =

     TestUtils.readKeyValues(streamsCountHoppingWindow.outputTopic,  

                    consumerProps,

                    45_000, #3

                    12);  #4

assertThat(actualConsumed, equalTo(expectedKeyValues));  #5

So we create an expected list where the count increments by the number of
records sent plus the previous count (1 + 2 + 3 + 4..) then we use another
utility method to consume from the topic and return the results to the test to
assert the results match our expectations of the application output. When
running this test, it should pass every time. The main points of this section
are to first create an expected results for comparison, but also to use utility
helper methods that faciliate re-use across the different integration tests. I
haven’t included examples of integration testing for the producer and
consumer classes, but you’d follow the same pattern, create a test class with
the @Testcontainer annotation and a @Container field in the class and use
the helper methods for producing and consuming to drive the test. There are
examples of these types of integration tests in source code for the book.

12.7 Summary

Testing is a critical part of development and there should be tests
corresponding to each piece of the application to a reasonable level.
Unit tests should make up the bulk of your testing strategy, but you’ll



still need to include integration tests to make sure everything works
together as expected.
Using the MockProducer and MockConsumer are effective for
performing testing of client applications without requiring the use of a
live Kafka broker.
For Kafka Streams applciations you should have unit tests for the
various mappers, aggregators and, punctuators to validate their expected
behavior, but you can also use the TopologyTestDriver to test your
entire topology but without the need for a live Kafka broker.
When performing an integration test you should use Testcontainers to
provide the Kafka broker for the test as it takes care of getting the
container and managing the container lifecycle for you.
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